CANTOR SETS AND FIELDS OF REALS

被引:0
|
作者
Kuba, Gerald [1 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Math, Vienna, Austria
来源
MATEMATICKI VESNIK | 2022年 / 74卷 / 04期
关键词
Transcendental extensions; descriptive set theory;
D O I
10.57016/MV-ywug8949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main result is a construction of four families C1, C2, B1, B2 which are equipollent with the power set of R and satisfy the following properties. (i) The members of the families are proper subfields K of R where R is algebraic over K. (ii) Each field in C-1 boolean OR C-2 contains a Cantor set. (iii) Each field in B-1 boolean OR B-2 is a Bernstein set. (iv) All fields in C-1 boolean OR B-1 are isomorphic. (v) If K, L are fields in C2. B2 then K is isomorphic to some subfield of L only in the trivial case K = L.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [21] Sums of Cantor sets
    Cabrelli, CA
    Hare, KE
    Molter, UM
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 1299 - 1313
  • [22] A Characteristic of Cantor Sets
    麦结华
    柳州师专学报, 2013, 28 (01) : 108 - 110
  • [23] Parabolic Cantor sets
    Urbanski, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (03) : 241 - 277
  • [24] Hairy Cantor sets
    Cheraghi, Davoud
    Pedramfar, Mohammad
    ADVANCES IN MATHEMATICS, 2022, 398
  • [25] Nested Cantor sets
    Pierre Berger
    Carlos Gustavo Moreira
    Mathematische Zeitschrift, 2016, 283 : 419 - 435
  • [26] SCRAMBLED CANTOR SETS
    Geschke, Stefan
    Grebik, Jan
    Miller, Benjamin D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4461 - 4468
  • [27] Nested Cantor sets
    Berger, Pierre
    Moreira, Carlos Gustavo
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 419 - 435
  • [28] Generic constructions of small sets of reals
    Brendle, J
    TOPOLOGY AND ITS APPLICATIONS, 1996, 71 (02) : 125 - 147
  • [29] EMBEDDING CANTOR SETS IN A MANIFOLD .I. TAME CANTOR SETS IN EN
    OSBORNE, RP
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (01) : 57 - &
  • [30] THE MOUSE SET CONJECTURE FOR SETS OF REALS
    Sargsyan, Grigor
    Steel, John
    JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (02) : 671 - 683