Integrators for nonholonomic mechanical systems

被引:64
|
作者
McLachlan, R. [1 ]
Perlmutter, M. [1 ]
机构
[1] Massey Univ, IFS, Palmerston North 5301, New Zealand
关键词
D O I
10.1007/s00332-005-0698-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a discrete analog of the Lagrange-d'Alembert principle of nonhonolomic mechanics and give conditions for it to define a map and to be reversible. In specific cases it can generate linearly implicit, semi-implicit, or implicit numerical integrators for nonholonomic systems which, in several examples, exhibit superior preservation of the dynamics. We also study discrete nonholonomic systems on Lie groups and their reduction theory, and explore the properties of the exact discrete flow of a nonholonomic system.
引用
收藏
页码:283 / 328
页数:46
相关论文
共 50 条
  • [31] GEOMETRIZATION OF NONHOLONOMIC MECHANICAL SYSTEMS AND THEIR SOLVABILITY
    慕小武
    郭仲衡
    [J]. ScienceinChina,Ser.A, 1990, Ser.A.1990 (02) - 184
  • [32] Adaptive control of nonholonomic mechanical systems
    Colbaugh, R
    Barany, E
    Glass, K
    [J]. PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 1428 - 1434
  • [33] Reduction of nonholonomic mechanical systems with symmetries
    Cantrijn, F
    de León, M
    Marrero, JC
    de Diego, DM
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 1998, 42 (1-2) : 25 - 45
  • [34] Adaptive stabilization of nonholonomic mechanical systems
    Colbaugh, R
    Barany, E
    Glass, K
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3081 - 3088
  • [35] Nonholonomic mechanical systems and stabilization of motion
    Kalenova V.I.
    Karapetjan A.V.
    Morozov V.M.
    Salmina M.A.
    [J]. Journal of Mathematical Sciences, 2007, 146 (3) : 5877 - 5905
  • [36] Feedback Integrators for Mechanical Systems with Holonomic Constraints
    Chang, Dong Eui
    Perlmutter, Matthew
    Vankerschaver, Joris
    [J]. SENSORS, 2022, 22 (17)
  • [37] Variational Integrators on Manifolds for Constrained Mechanical Systems
    Lin, Ziying
    Li, Hongchen
    Ding, Ye
    Zhu, Xiangyang
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2024, 91 (07):
  • [38] Momentum and energy preserving integrators for nonholonomic dynamics
    Ferraro, S.
    Iglesias, D.
    de Diego, D. Martin
    [J]. NONLINEARITY, 2008, 21 (08) : 1911 - 1928
  • [39] High-order integrators for Lagrangian systems on homogeneous spaces via nonholonomic mechanics
    de Almagro, Rodrigo T. Sato Martin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 421
  • [40] Learning control for uncertain nonholonomic mechanical systems
    Colbaugh, R
    Glass, K
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3117 - 3122