Integrators for nonholonomic mechanical systems

被引:64
|
作者
McLachlan, R. [1 ]
Perlmutter, M. [1 ]
机构
[1] Massey Univ, IFS, Palmerston North 5301, New Zealand
关键词
D O I
10.1007/s00332-005-0698-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a discrete analog of the Lagrange-d'Alembert principle of nonhonolomic mechanics and give conditions for it to define a map and to be reversible. In specific cases it can generate linearly implicit, semi-implicit, or implicit numerical integrators for nonholonomic systems which, in several examples, exhibit superior preservation of the dynamics. We also study discrete nonholonomic systems on Lie groups and their reduction theory, and explore the properties of the exact discrete flow of a nonholonomic system.
引用
收藏
页码:283 / 328
页数:46
相关论文
共 50 条
  • [21] GEOMETRIZATION OF NONHOLONOMIC MECHANICAL SYSTEMS AND THEIR SOLVABILITY
    慕小武
    郭仲衡
    [J]. Science in China,SerA., 1990, Ser.A.1990 (02) : 176 - 184
  • [22] On the Lagrangian formalism of nonholonomic mechanical systems
    Yoshimura, Hiroaki
    [J]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 627 - 633
  • [23] Learning control for nonholonomic mechanical systems
    Colbaugh, R
    Glass, K
    [J]. NONLINEAR CONTROL SYSTEMS DESIGN 1998, VOLS 1& 2, 1998, : 745 - 750
  • [24] Constraint Control of Nonholonomic Mechanical Systems
    Vakhtang Putkaradze
    Stuart Rogers
    [J]. Journal of Nonlinear Science, 2018, 28 : 193 - 234
  • [25] On control of underactuated nonholonomic mechanical systems
    Dong, Wen-Jie
    Xu, Wen-Li
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2001, 22 (06): : 525 - 528
  • [26] GEOMETRIZATION OF NONHOLONOMIC MECHANICAL SYSTEMS AND THEIR SOLVABILITY
    慕小武
    郭仲衡
    [J]. Science China Mathematics, 1990, (02) : 176 - 184
  • [27] Stability of impulsive nonholonomic mechanical systems
    A. I. Dvirnyi
    V. I. Slyn’ko
    [J]. International Applied Mechanics, 2008, 44 : 353 - 360
  • [28] Adaptive control of nonholonomic mechanical systems
    Colbaugh, R
    Barany, E
    Glass, K
    [J]. PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 1428 - 1434
  • [29] Nonholonomic mechanical systems and stabilization of motion
    Kalenova V.I.
    Karapetjan A.V.
    Morozov V.M.
    Salmina M.A.
    [J]. Journal of Mathematical Sciences, 2007, 146 (3) : 5877 - 5905
  • [30] Adaptive stabilization of nonholonomic mechanical systems
    Colbaugh, R
    Barany, E
    Glass, K
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3081 - 3088