A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [41] Variable selection in multivariate linear models for functional data via sparse regularization
    Hidetoshi Matsui
    Yuta Umezu
    Japanese Journal of Statistics and Data Science, 2020, 3 : 453 - 467
  • [42] Variable Selection for Max-Affine Regression via Sparse Gradient Descent
    Kanj, Haitham
    Kim, Seonho
    Lee, Kiryung
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [43] Variable selection in multivariate linear models for functional data via sparse regularization
    Matsui, Hidetoshi
    Umezu, Yuta
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (02) : 453 - 467
  • [44] Bi-level variable selection via adaptive sparse group Lasso
    Fang, Kuangnan
    Wang, Xiaoyan
    Zhang, Shengwei
    Zhu, Jianping
    Ma, Shuangge
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2750 - 2760
  • [45] Simultaneous variable and factor selection via sparse group lasso in factor analysis
    Dang, Yuanchu
    Wang, Qing
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (14) : 2744 - 2764
  • [46] Comments on "Exact inference for the random-effect model for meta-analyses with rare events" Response
    Gronsbell, Jessica
    Tian, Lu
    STATISTICS IN MEDICINE, 2020, 39 (22) : 3024 - 3025
  • [47] A note on variable selection in functional regression via random subspace method
    Smaga, Lukasz
    Matsui, Hidetoshi
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (03): : 455 - 477
  • [48] A note on variable selection in functional regression via random subspace method
    Łukasz Smaga
    Hidetoshi Matsui
    Statistical Methods & Applications, 2018, 27 : 455 - 477
  • [49] Variable Selection in the Cox Regression Model with Covariates Missing at Random
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    BIOMETRICS, 2010, 66 (01) : 97 - 104
  • [50] Variable selection for sparse logistic regression
    Zanhua Yin
    Metrika, 2020, 83 : 821 - 836