A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [21] Fixed-effect versus random-effect model in meta-analysis: How to decide?
    Maitra, Souvik
    INDIAN JOURNAL OF ANAESTHESIA, 2025, 69 (01) : 143 - 146
  • [22] THE SELECTION EFFECT OF RANDOM VARIABLE COMPONENTS ON CLASSIFICATION
    SERDOBOLSKII, VI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1983, (09): : 46 - 55
  • [23] Sparse model selection via integral terms
    Schaeffer, Hayden
    McCalla, Scott G.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [24] A random-effect gamma process model with random initial degradation for accelerated destructive degradation testing data
    Ling, Man Ho
    Bae, Suk Joo
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (01) : 374 - 387
  • [25] The Construction of Degradation Trend using the "Random-Effect" Models
    Chimitova, Ekaterina V.
    Chetvertakova, Evgeniya S.
    Faddeenkov, Andrey V.
    2016 13TH INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING (APEIE), VOL 2, 2016, : 378 - 380
  • [26] Bayesian sparse seemingly unrelated regressions model with variable selection and covariance estimation via the horseshoe+
    Dongu Han
    Daeyoung Lim
    Taeryon Choi
    Journal of the Korean Statistical Society, 2023, 52 : 676 - 714
  • [27] Sparse Extended Redundancy Analysis: Variable Selection via the Exclusive LASSO
    Kok, Bing Cai
    Choi, Ji Sok
    Oh, Hyelim
    Choi, Ji Yeh
    MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (03) : 426 - 446
  • [28] Sparse linear regression in unions of bases via Bayesian variable selection
    Fevotte, Cedric
    Godsill, Simon J.
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 441 - 444
  • [29] A new variable selection approach using Random Forests
    Hapfelmeier, A.
    Ulm, K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 60 : 50 - 69
  • [30] A Bayesian spatial multimarker genetic random-effect model for fine-scale mapping
    Tsai, M. -Y.
    Hsiao, C. K.
    Wen, S. -H.
    ANNALS OF HUMAN GENETICS, 2008, 72 : 658 - 669