A new sparse variable selection via random-effect model

被引:30
|
作者
Lee, Youngjo [1 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimator; Prediction; Random-effect models; Sparsity; Variable selection; REGRESSION; SHRINKAGE;
D O I
10.1016/j.jmva.2013.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [1] A random-effect model approach for group variable selection
    Lee, Sangin
    Pawitan, Yudi
    Lee, Youngjo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 89 : 147 - 157
  • [2] The Random-Effect DINA Model
    Huang, Hung-Yu
    Wang, Wen-Chung
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2014, 51 (01) : 75 - 97
  • [3] The use of random-effect models for high-dimensional variable selection problems
    Kwon, Sunghoon
    Oh, Seungyoung
    Lee, Youngjo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 401 - 412
  • [4] Fitting via alternative random-effect models
    Lee, Y
    Nelder, JA
    STATISTICS AND COMPUTING, 2006, 16 (01) : 69 - 75
  • [5] Fitting via alternative random-effect models
    Youngjo Lee
    John A. Nelder
    Statistics and Computing, 2006, 16 : 69 - 75
  • [6] The Random-Effect Generalized Rating Scale Model
    Wang, Wen-Chung
    Wu, Shiu-Lien
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2011, 48 (04) : 441 - 456
  • [7] Proportional Odds Model Affiliate with Random-Effect Longitudinal Model
    Yoke, Chin Wan
    Khalid, Zarina Mohd
    JURNAL TEKNOLOGI, 2013, 63 (02):
  • [8] MATCHED PAIRS AND SETS - A RANDOM-EFFECT MODEL AND ANALYSIS
    DARROCH, JN
    COMMUNITY HEALTH STUDIES, 1984, 8 (01): : 144 - 145
  • [9] The multivariate multiple-membership random-effect model: An introduction and evaluation
    Sunyoung Park
    S. Natasha Beretvas
    Behavior Research Methods, 2020, 52 : 1254 - 1270
  • [10] The multivariate multiple-membership random-effect model: An introduction and evaluation
    Park, Sunyoung
    Beretvas, S. Natasha
    BEHAVIOR RESEARCH METHODS, 2020, 52 (03) : 1254 - 1270