Correcting the multi-Monte Carlo method for particle coagulation

被引:22
|
作者
Zhao, Haibo [1 ,2 ]
Zheng, Chuguang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
[2] Univ Duisburg Essen, Inst Nanostruct & Technol NST, D-47057 Duisburg, Germany
基金
中国国家自然科学基金;
关键词
Coagulation; Population balance; Monte Carlo; Weighting scheme; POPULATION BALANCES; SIMULATION; AGGREGATION; SYSTEMS;
D O I
10.1016/j.powtec.2009.01.019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multi-Monte Carlo (MMC) method does not correctly treat the results of coagulation event between two differentially-weighted simulation particles, resulting in comparatively large error in predicting the evolution of particle size distribution. This study corrected the consequential treatment of coagulation event, satisfying the basic laws of mass conservation and number depletion and then resulting in good prediction for particle size distribution. The corrected MMC method can complete with any available Monte Carlo methods with respect to computational accuracy. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:120 / 123
页数:4
相关论文
共 50 条
  • [41] Weighted Monte Carlo method for an approximate solution of the nonlinear coagulation equation
    Mikhailov G.A.
    Rogazinsky S.V.
    Ureva N.M.
    Computational Mathematics and Mathematical Physics, 2006, 46 (4) : 680 - 690
  • [42] Efficiency of Parallel Monte Carlo Method to Solve Nonlinear Coagulation Equation
    Marchenko, Mikhail
    PARALLEL COMPUTING TECHNOLOGIES, PROCEEDINGS, 2009, 5698 : 133 - 141
  • [43] A MONTE-CARLO SIMULATION OF COAGULATION
    GARCIA, AL
    VANDENBROECK, C
    AERTSENS, M
    SERNEELS, R
    PHYSICA A, 1987, 143 (03): : 535 - 546
  • [44] A GPU-based parallelized Monte-Carlo method for particle coagulation using an acceptance-rejection strategy
    Wei, Jianming
    Kruis, Frank Einar
    CHEMICAL ENGINEERING SCIENCE, 2013, 104 : 451 - 459
  • [45] Coarse-grained computation for particle coagulation and sintering processes by linking Quadrature Method of Moments with Monte-Carlo
    Zou, Yu
    Kavousanakis, Michail E.
    Kevrekidis, Ioannis G.
    Fox, Rodney O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (14) : 5299 - 5314
  • [46] A study of the multi-canonical Monte Carlo method
    Smith, GR
    Bruce, AD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23): : 6623 - 6643
  • [47] Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method
    Ellinghaus, Paul
    Nedjalkov, Mihail
    Selberherr, Siegfried
    NUMERICAL METHODS AND APPLICATIONS (NMA 2014), 2015, 8962 : 27 - 33
  • [48] A study of the multi-canonical Monte Carlo method
    J Phys A Math Gen, (6623):
  • [49] ON THE ACCELERATION OF THE MULTI-LEVEL MONTE CARLO METHOD
    Debrabant, Kristian
    Roessler, Andreas
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 307 - 322
  • [50] A multi-scale Monte Carlo method for electrolytes
    Liang, Yihao
    Xu, Zhenli
    Xing, Xiangjun
    NEW JOURNAL OF PHYSICS, 2015, 17