ON THE ACCELERATION OF THE MULTI-LEVEL MONTE CARLO METHOD

被引:0
|
作者
Debrabant, Kristian [1 ]
Roessler, Andreas [2 ]
机构
[1] Univ So Denmark, Dept Math & Comp Sci, DK-5230 Odense, Denmark
[2] Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
关键词
Multi-level Monte Carlo; Monte Carlo; weak approximation; variance reduction; stochastic differential equation; SIMULATION; SDES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multi-level Monte Carlo method proposed by Giles (2008) approximates the expectation of some functionals applied to a stochastic process with optimal order of convergence for the mean-square error. In this paper a modified multi-level Monte Carlo estimator is proposed with significantly reduced computational costs. As the main result, it is proved that the modified estimator reduces the computational costs asymptotically by a factor (p/alpha)(2) if weak approximation methods of orders alpha and p are applied in the case of computational costs growing with the same order as the variances decay.
引用
收藏
页码:307 / 322
页数:16
相关论文
共 50 条
  • [1] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Claude J. Gittelson
    Juho Könnö
    Christoph Schwab
    Rolf Stenberg
    [J]. Numerische Mathematik, 2013, 125 : 347 - 386
  • [2] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Gittelson, Claude J.
    Konno, Juho
    Schwab, Christoph
    Stenberg, Rolf
    [J]. NUMERISCHE MATHEMATIK, 2013, 125 (02) : 347 - 386
  • [3] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Andrea Barth
    Christoph Schwab
    Nathaniel Zollinger
    [J]. Numerische Mathematik, 2011, 119 : 123 - 161
  • [4] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [5] A fault tolerant implementation of Multi-Level Monte Carlo methods
    Pauli, Stefan
    Kohler, Manuel
    Arbenz, Peter
    [J]. PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 471 - 480
  • [6] Estimation of Distribution Systems Expected Energy Not Supplied Index by Multi-level Monte Carlo Method
    Huda, A. S. Nazmul
    Zivanovic, Rastko
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2019, 47 (9-10) : 810 - 822
  • [7] Uncertainty quantification in tsunami modeling using multi-level Monte Carlo finite volume method
    Sánchez-Linares C.
    de la Asunción M.
    Castro M.J.
    González-Vida J.M.
    Macías J.
    Mishra S.
    [J]. Journal of Mathematics in Industry, 6 (1)
  • [8] Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients
    Li, Jingshi
    Wang, Xiaoshen
    Zhang, Kai
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 181 - 194
  • [9] A multi-level dimension reduction Monte-Carlo method for jump-diffusion models
    Duy-Minh Dang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 324 : 49 - 71
  • [10] Multi-level Monte Carlo weak Galerkin method with nested meshes for stochastic Brinkman problem
    Hao, Yongle
    Wang, Xiaoshen
    Zhang, Kai
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 214 - 227