Dynamic Markov random fields for stochastic modeling of visual attention

被引:0
|
作者
Kimura, Akisato
Pang, Derek
Takeuchi, Tatsuto
Yamato, Junji
Kashino, Kunio
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This report proposes a new stochastic model of visual attention to predict the likelihood of where humans typically focus on a video scene. The proposed model is composed of a dynamic Bayesian network that simulates and combines a person's visual saliency response and eye movement patterns to estimate the most probable regions of attention. Dynamic Markov random field (MRF) models are newly introduced to include spatiotemporal relationships of visual saliency responses. Experimental results have revealed that the propose model outperforms the previous deterministic model and the stochastic model without dynamic MRF in predicting human visual attention.
引用
收藏
页码:340 / 344
页数:5
相关论文
共 50 条
  • [31] Manifold Guided Composite of Markov Random Fields for Image Modeling
    Lin, Dahua
    Fisher, John
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2176 - 2183
  • [32] A STOCHASTIC MODEL OF SELECTIVE VISUAL ATTENTION WITH A DYNAMIC BAYESIAN NETWORK
    Pang, Derek
    Kimura, Akisato
    Takeuchi, Tatsuto
    Yamato, Junji
    Kashino, Kunio
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1073 - +
  • [33] Dynamic Hierarchical Markov Random Fields for integrated web data extraction
    Zhu, Jun
    Nie, Zaiqing
    Zhang, Bo
    Wen, Ji-Rong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 1583 - 1614
  • [34] Dynamic hierarchical Markov random fields for integrated web data extraction
    Zhu, Jun
    Nie, Zaiqing
    Zhang, Bo
    Wen, Ji-Rong
    Journal of Machine Learning Research, 2008, 9 : 1583 - 1614
  • [35] Efficiently solving dynamic Markov random fields using graph cuts
    Kohli, P
    Torr, PHS
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 922 - 929
  • [36] Modeling of Multiscale Porous Media Using Multiple Markov Random Fields
    Liu, Y.
    Mohebi, A.
    Fieguth, P.
    PORO-MECHANICS IV, 2009, : 435 - 440
  • [37] Strong Markov Properties for Markov Random Fields
    Kimberly K. J. Kinateder
    Journal of Theoretical Probability, 2000, 13 : 1101 - 1114
  • [38] Strong Markov properties for Markov random fields
    Kinateder, KKJ
    JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) : 1101 - 1114
  • [39] Modeling material stress using integrated Gaussian Markov random fields
    Marcy, Peter W.
    Vander Wiel, Scott A.
    Storlie, Curtis B.
    Livescu, Veronica
    Bronkhorst, Curt A.
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (09) : 1616 - 1636
  • [40] Modeling spatial temporal binary data using Markov random fields
    Zhu, J
    Huang, HC
    Wu, JP
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2005, 10 (02) : 212 - 225