Dynamic Markov random fields for stochastic modeling of visual attention

被引:0
|
作者
Kimura, Akisato
Pang, Derek
Takeuchi, Tatsuto
Yamato, Junji
Kashino, Kunio
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This report proposes a new stochastic model of visual attention to predict the likelihood of where humans typically focus on a video scene. The proposed model is composed of a dynamic Bayesian network that simulates and combines a person's visual saliency response and eye movement patterns to estimate the most probable regions of attention. Dynamic Markov random field (MRF) models are newly introduced to include spatiotemporal relationships of visual saliency responses. Experimental results have revealed that the propose model outperforms the previous deterministic model and the stochastic model without dynamic MRF in predicting human visual attention.
引用
收藏
页码:340 / 344
页数:5
相关论文
共 50 条
  • [21] Modeling Aspects of Theory of Mind with Markov Random Fields
    Jesse Butterfield
    Odest Chadwicke Jenkins
    David M. Sobel
    Jonas Schwertfeger
    International Journal of Social Robotics, 2009, 1 : 41 - 51
  • [22] Dynamic Markov Random Field Model for Visual Tracking
    Kim, Daehwan
    Kim, Ki-Hong
    Lee, Gil-Haeng
    Kim, Daijin
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 203 - 212
  • [23] MARKOV RANDOM FIELDS AND GIBBS RANDOM FIELDS
    SHERMAN, S
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (01) : 92 - 103
  • [24] STOCHASTIC MARKOV FIELDS
    ROZANOV, YA
    ADVANCES IN APPLIED PROBABILITY, 1978, 10 (02) : 272 - 273
  • [25] Convergence of Markovian stochastic approximation for Markov random fields with hidden variables
    Qi, Anna
    Yang, Lihua
    Huang, Chao
    STOCHASTICS AND DYNAMICS, 2020, 20 (05)
  • [26] MARKOV RANDOM-FIELDS AND STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS
    ROZANOV, JA
    MATHEMATICS OF THE USSR-SBORNIK, 1979, 35 (01): : 157 - 164
  • [27] STOCHASTIC EXTREMAL PROBLEMS AND THE STRONG MARKOV PROPERTY OF RANDOM-FIELDS
    EVSTIGNEEV, IV
    RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (02) : 1 - 49
  • [28] Prior representations of random fields for stochastic multiscale modeling
    Guilleminot, Johann
    Soize, Christian
    IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN STOCHASTIC MECHANICS, 2013, 6 : 44 - 49
  • [29] Dynamic graph cuts for efficient inference in Markov random fields
    Kohli, Pushmeet
    Torr, Philip H. S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (12) : 2079 - 2088
  • [30] On modeling Gene Regulatory Networks using Markov Random Fields
    Santhanam, Narayana
    Dingel, Janis
    Milenkovic, Olgica
    ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 156 - +