Dynamic Markov random fields for stochastic modeling of visual attention

被引:0
|
作者
Kimura, Akisato
Pang, Derek
Takeuchi, Tatsuto
Yamato, Junji
Kashino, Kunio
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This report proposes a new stochastic model of visual attention to predict the likelihood of where humans typically focus on a video scene. The proposed model is composed of a dynamic Bayesian network that simulates and combines a person's visual saliency response and eye movement patterns to estimate the most probable regions of attention. Dynamic Markov random field (MRF) models are newly introduced to include spatiotemporal relationships of visual saliency responses. Experimental results have revealed that the propose model outperforms the previous deterministic model and the stochastic model without dynamic MRF in predicting human visual attention.
引用
下载
收藏
页码:340 / 344
页数:5
相关论文
共 50 条
  • [1] Dynamic Markov Random Fields
    Torr, P. H. S.
    2008 INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, PROCEEDINGS, 2008, : 21 - 26
  • [2] Bayesian Stochastic Soil Modeling Framework Using Gaussian Markov Random Fields
    Wang, Hui
    Wang, Xiangrong
    Wellmann, J. Florian
    Liang, Robert Y.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2018, 4 (02):
  • [3] A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields
    Hui Wang
    J. Florian Wellmann
    Zhao Li
    Xiangrong Wang
    Robert Y. Liang
    Mathematical Geosciences, 2017, 49 : 145 - 177
  • [4] A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields
    Wang, Hui
    Wellmann, J. Florian
    Li, Zhao
    Wang, Xiangrong
    Liang, Robert Y.
    MATHEMATICAL GEOSCIENCES, 2017, 49 (02) : 145 - 177
  • [5] Computationally Tractable Stochastic Image Modeling Based on Symmetric Markov Mesh Random Fields
    Yousefi, Siamak
    Kehtarnavaz, Nasser
    Cao, Yan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2192 - 2206
  • [6] Dynamic Camera Scheduling for Visual Surveillance in Crowded Scenes using Markov Random Fields
    Neves, Joao C.
    Proenca, Hugo
    2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2015,
  • [7] Stochastic gradient estimation strategies for Markov random fields
    Younes, L
    BAYESIAN INFERENCE FOR INVERSE PROBLEMS, 1998, 3459 : 315 - 325
  • [8] Stochastic computation of medial axis in Markov random fields
    Zhu, SC
    1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, : 72 - 79
  • [9] Markov Random Fields modeling in Artificial Intelligence
    Ţoca, Cosmin
    Pǎtraşcu, Carmen
    Ciuc, Mihai
    Stoichescu, Dan-Alexandru
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2017, 79 (02): : 49 - 60
  • [10] A NEW STOCHASTIC IMAGE MODEL BASED ON MARKOV RANDOM FIELDS AND ITS APPLICATION TO TEXTURE MODELING
    Yousefi, Siamak
    Kehtarnavaz, Nasser
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1285 - 1288