A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data

被引:21
|
作者
Raket, Lars Lau [1 ]
Sommer, Stefan [1 ]
Markussen, Bo [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen, Denmark
关键词
Data alignment; Functional mixed-effects model; Nonlinear mixed-effects model; Phase variation; Amplitude variation; Smoothing; MAXIMUM-LIKELIHOOD-ESTIMATION;
D O I
10.1016/j.patrec.2013.10.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitting the model and registering data, the proposed method estimates parameters and predicts random effects more precisely than conventional methods that register data in preprocessing. The ability of the model to estimate both hyperparameters and predict horizontal and vertical effects are illustrated on both simulated and real data. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] An Examination of a Functional Mixed-Effects Modeling Approach to the Analysis of Longitudinal Data
    Fine, Kimberly L.
    Suk, Hye Won
    Grimm, Kevin J.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (04) : 475 - 491
  • [32] Identification of IVGTT minimal glucose model by nonlinear mixed-effects approaches
    Denti, Paolo
    Bertoldo, Alessandra
    Vicini, Paolo
    Cobelli, Claudio
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 6299 - +
  • [33] Nested Inverse Gaussian Mixed-Effects Model for Longitudinal Data
    Duan, Xing De
    Zhang, Shi
    Zhang, Wen Zhuan
    Wu, Ying
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY [ICICT-2019], 2019, 154 : 561 - 565
  • [34] A Mixed-Effects Model for Detecting Disrupted Connectivities in Heterogeneous Data
    Bhaumik, Dulal
    Jie, Fei
    Nordgren, Rachel
    Bhaumik, Runa
    Sinha, Bikas K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2381 - 2389
  • [35] A semiparametric Bayesian to Poisson mixed-effects model for Epileptics data
    Duan, Xingde
    Liang, Lin
    Wu, Ying
    2014 SEVENTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO), 2014, : 40 - 44
  • [36] Multivariatetsemiparametric mixed-effects model for longitudinal data with multiple characteristics
    Taavoni, M.
    Arashi, M.
    Wang, Wan-Lun
    Lin, Tsung-, I
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (02) : 260 - 281
  • [37] Nonlinear Mixed-Effects Modeling Approach for Simplified Reference Tissue Model
    Shieh, Denise
    Matheson, Granville J.
    Ogden, R. Todd
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (04) : 1191 - 1196
  • [38] POPULATION PHARMACOKINETICS OF GENTAMICIN IN NEONATES USING A NONLINEAR, MIXED-EFFECTS MODEL
    JENSEN, PD
    EDGREN, BE
    BRUNDAGE, RC
    PHARMACOTHERAPY, 1992, 12 (03): : 178 - 182
  • [39] A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data
    Liu, Wei
    Wu, Lang
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (01) : 112 - 122
  • [40] Nonlinear Mixed-Effects Modeling Programs in R
    Stegmann, Gabriela
    Jacobucci, Ross
    Harring, Jeffrey R.
    Grimm, Kevin J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 160 - 165