A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data

被引:21
|
作者
Raket, Lars Lau [1 ]
Sommer, Stefan [1 ]
Markussen, Bo [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen, Denmark
关键词
Data alignment; Functional mixed-effects model; Nonlinear mixed-effects model; Phase variation; Amplitude variation; Smoothing; MAXIMUM-LIKELIHOOD-ESTIMATION;
D O I
10.1016/j.patrec.2013.10.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitting the model and registering data, the proposed method estimates parameters and predicts random effects more precisely than conventional methods that register data in preprocessing. The ability of the model to estimate both hyperparameters and predict horizontal and vertical effects are illustrated on both simulated and real data. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Nonlinear Mixed-Effects Model for the Evaluation and Prediction of Pavement Deterioration
    Khraibani, Hussein
    Lorino, Tristan
    Lepert, Philippe
    Marion, Jean-Marie
    JOURNAL OF TRANSPORTATION ENGINEERING-ASCE, 2012, 138 (02): : 149 - 156
  • [22] A Nonlinear Mixed-Effects Model for Multivariate Longitudinal Data with Dropout with Application to HIV Disease Dynamics
    Luwanda, Artz G.
    Mwambi, Henry G.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2016, 21 (02) : 277 - 294
  • [23] Nonparametric smoothing estimates of a nonlinear mixed model with longitudinal data
    Liu, J
    Xiang, J
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1996, : 267 - 269
  • [24] A Nonlinear Mixed-Effects Model for Multivariate Longitudinal Data with Dropout with Application to HIV Disease Dynamics
    Artz G. Luwanda
    Henry G. Mwambi
    Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 277 - 294
  • [25] Influence diagnostics in linear and nonlinear mixed-effects models with censored data
    Matos, Larissa A.
    Lachos, Victor H.
    Balakrishnan, N.
    Labra, Filidor V.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 450 - 464
  • [26] Mixed-effects model by projections
    Choi, Jaesung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1155 - 1163
  • [27] A new mixed-effects mixture model for constrained longitudinal data
    Di Brisco, Agnese Maria
    Migliorati, Sonia
    STATISTICS IN MEDICINE, 2020, 39 (02) : 129 - 145
  • [28] Mixed-effects Model For Classification And Prediction In Longitudinal Data Analysis
    Poddar, Mukund
    Harigovind, Gautam
    2018 INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND SYSTEMS BIOLOGY (BSB), 2018, : 36 - 39
  • [29] Linear mixed-effects model for multivariate longitudinal compositional data
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    NEUROCOMPUTING, 2019, 335 : 48 - 58
  • [30] A mixed-effects regression model for longitudinal multivariate ordinal data
    Liu, LC
    Hedeker, D
    BIOMETRICS, 2006, 62 (01) : 261 - 268