Finite-size corrections at the hard edge for the Laguerre β ensemble

被引:12
|
作者
Forrester, Peter J. [1 ]
Trinh, Allan K. [1 ]
机构
[1] Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Dept Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
asymptotic analysis; mathematical physics; numerical methods; RANDOM-MATRIX THEORY; SPACING DISTRIBUTIONS; EIGENVALUE DISTRIBUTION; EQUATIONS; LUE; UNIVERSALITY; ASYMPTOTICS; EXPANSION; DENSITY; ZEROS;
D O I
10.1111/sapm.12279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fundamental question in random matrix theory is to quantify the optimal rate of convergence to universal laws. We take up this problem for the Laguerre beta ensemble, characterized by the Dyson parameter beta, and the Laguerre weight xae-beta x/2, x>0 in the hard edge limit. The latter relates to the eigenvalues in the vicinity of the origin in the scaled variable xx/4N. Previous work has established the corresponding functional form of various statistical quantities-for example, the distribution of the smallest eigenvalue, provided that a is an element of Z0. We show, using the theory of multidimensional hypergeometric functions based on Jack polynomials, that with the modified hard edge scaling xx/4(N+a/beta), the rate of convergence to the limiting distribution is O(1/N2), which is optimal. In the case beta=2, general a>-1 the explicit functional form of the distribution of the smallest eigenvalue at this order can be computed, as it can for a=1 and general beta>0. An iterative scheme is presented to numerically approximate the functional form for general a is an element of Z2.
引用
收藏
页码:315 / 336
页数:22
相关论文
共 50 条
  • [1] Finite-size corrections to the density of states
    Woerner, C. H.
    Munoz, E.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2012, 33 (05) : 1465 - 1472
  • [2] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [3] FINITE-SIZE CORRECTIONS IN THE XYZ HEISENBERG CHAIN
    MARTIN, HO
    DEVEGA, HJ
    [J]. PHYSICAL REVIEW B, 1985, 32 (09): : 5959 - 5965
  • [4] FINITE-SIZE CORRECTIONS FOR THE XXX-ANTIFERROMAGNET
    AVDEEV, LV
    DORFEL, BD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : L13 - L17
  • [5] An improved Landauer principle with finite-size corrections
    Reeb, David
    Wolf, Michael M.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [6] LOGARITHMIC CORRECTIONS TO FINITE-SIZE SCALING IN STRIPS
    CARDY, JL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 1093 - 1098
  • [7] Finite-size corrections to the atmospheric heating of micrometeorites
    Beech, Martin
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 402 (02) : 1208 - 1212
  • [8] Finite-size corrections in the random assignment problem
    Caracciolo, Sergio
    D'Achille, Matteo P.
    Malatesta, Enrico M.
    Sicuro, Gabriele
    [J]. PHYSICAL REVIEW E, 2017, 95 (05) : 052129
  • [9] Finite-size corrections to the blackbody radiation laws
    Garcia-Garcia, Antonio M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [10] CORRECTIONS TO FINITE-SIZE SCALING FOR QUANTUM CHAINS
    GEHLEN, GV
    HOEGER, C
    RITTENBERG, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (09): : L469 - L472