Weighted error estimates of the continuous interior penalty method for singularly perturbed problems

被引:22
|
作者
Burman, Erik [2 ]
Guzman, Johnny [1 ]
Leykekhman, Dmitriy [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
singularly perturbed; convection-diffusion; local error analysis; continuous interior penalty method; FINITE-ELEMENT METHODS; ADVECTION;
D O I
10.1093/imanum/drn001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyse local properties of the continuous interior penalty (CIP) method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows thats locally, the CIP method is comparable to the streamline-diffusion or the discontinuous Galerkin methods.
引用
收藏
页码:284 / 314
页数:31
相关论文
共 50 条