A continuous interior penalty finite element method for a third-order singularly perturbed boundary value problem

被引:6
|
作者
Zarin, Helena [1 ]
Roos, Hans-Gorg [2 ]
Teofanov, Ljiljana [3 ]
机构
[1] Univ Novi Sad, Dept Math & Informat, Fac Sci, Trg Dositeja Obradovica 4, Novi Sad 21000, Serbia
[2] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[3] Univ Novi Sad, Dept Fundamental Disciplines, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 01期
关键词
Singularly perturbed differential equation; Third-order boundary value problem; Interior penalty finite element method; Layer-adapted mesh; MESH;
D O I
10.1007/s40314-016-0339-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a continuous interior penalty finite element method designed for a third-order singularly perturbed problem. Using higher order polynomials on Shishkin-type layer-adapted meshes, a robust convergence has been proved in the corresponding energy norm. Moreover, we show numerical experiments which support our theoretical findings.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 50 条