On diffusion-uniform error estimates for the DG method applied to singularly perturbed problems

被引:8
|
作者
Kucera, Vaclav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
nonlinear convection-diffusion equation; discontinuous Galerkin finite element method; a priori error estimates; continuous mathematical induction; continuation; FINITE-ELEMENT-METHOD; DISCONTINUOUS GALERKIN METHOD; NUMERICAL-SOLUTION; APPROXIMATIONS; EULER; DGFEM;
D O I
10.1093/imanum/drt007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the analysis of the discontinuous Galerkin (DG) finite element method applied to a nonstationary nonlinear convection-diffusion problem on quasi-uniform triangulations. Using the technique of Zhang & Shu (2004, SIAM J. Numer. Anal., 42, 641-666), we prove a priori error estimates which are uniform with respect to the diffusion coefficient epsilon -> 0 and valid even in the purely convective case. Zhang and Shu perform their analysis for various explicit schemes using an argument which relies heavily on mathematical induction. We extend the analysis to the method of lines using continuous mathematical induction and a nonlinear Gronwall-type lemma. For an implicit scheme, we prove that standard arguments cannot prove the desired estimates without additional assumptions. For this purpose, we use a suitable continuation of the discrete implicit solution and again use continuous mathematical induction to prove error estimates under a CFL-like condition. Finally, we extend the analysis from globally Lipschitz continuous convective nonlinearities to the locally Lipschitz continuous case.
引用
收藏
页码:820 / 861
页数:42
相关论文
共 50 条
  • [1] A PRIORI DIFFUSION-UNIFORM ERROR ESTIMATES FOR SINGULARLY PERTURBED PROBLEMS: MIDPOINT-DG DISCRETIZATION
    Vlasak, Miloslav
    Kucera, Vaclav
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 202 - 208
  • [2] A PRIORI DIFFUSION-UNIFORM ERROR ESTIMATES FOR NONLINEAR SINGULARLY PERTURBED PROBLEMS: BDF2, MIDPOINT AND TIME DG
    Kucera, Vaclav
    Vlasak, Miloslav
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 537 - 563
  • [3] Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem
    Leykekhman, Dmitriy
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 21 - 39
  • [4] Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems
    Zhu, Huiqing
    Zhang, Zhimin
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (01) : 79 - 94
  • [5] ANALYSIS OF A DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS
    Lin, Runchang
    Ye, Xiu
    Zhang, Shangyou
    Zhu, Peng
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 830 - 841
  • [6] A posteriori error estimates for a dual finite element method for singularly perturbed reaction–diffusion problems
    JaEun Ku
    Martin Stynes
    [J]. BIT Numerical Mathematics, 2024, 64
  • [7] A posteriori error estimates for a dual finite element method for singularly perturbed reaction-diffusion problems
    Ku, JaEun
    Stynes, Martin
    [J]. BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [8] Uniform estimates for conforming Galerkin method for anisotropic singularly perturbed elliptic problems
    Maltese, David
    Ogabi, Chokri
    [J]. APPLICABLE ANALYSIS, 2024, 103 (14) : 2625 - 2646
  • [9] Weighted error estimates of the continuous interior penalty method for singularly perturbed problems
    Burman, Erik
    Guzman, Johnny
    Leykekhman, Dmitriy
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) : 284 - 314
  • [10] GUARANTEED AND ROBUST A POSTERIORI ERROR ESTIMATES FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    Cheddadi, Ibrahim
    Fucik, Radek
    Prieto, Mariana I.
    Vohralik, Martin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05): : 867 - 888