Push Recovery Control for Humanoid Robot using Reinforcement Learning

被引:9
|
作者
Seo, Donghyeon [1 ]
Kim, Harin [1 ]
Kim, Donghan [1 ]
机构
[1] Kyung Hee Univ, Dept Elect, Yongin, South Korea
基金
新加坡国家研究基金会;
关键词
component; bipedal robot; humanoid robot; push recovery; balancing control; reinforcement learning;
D O I
10.1109/IRC.2019.00102
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A humanoid robot similar to a human is structurally unstable, so the push recovery control is essential. The proposed push recovery controller consists of a IMU sensor part, a high-level push recovery controller and a low-level push recovery controller. The IMU sensor part measures the linear velocity and angular velocity and transmits it to the high-level push recovery controller. The high-level push recovery controller selects the strategy of the low-level push recovery controller based on the stability region. The stability region is improved using the DQN(Deep Q-Network) of the reinforcement learning method. The low-level push recovery controller consists of a ankle, hip and step strategies. Each strategy is analyzed using LIPM(Linear Inverted Pendulum Model). Based on the analysis, the actuators corresponding to each strategy are controlled.
引用
收藏
页码:488 / 492
页数:5
相关论文
共 50 条
  • [21] A Reinforcement Learning Method for Humanoid Robot Walking
    Liu, Yunda
    Bi, Sheng
    Dong, Min
    Zhang, Yingjie
    Huang, Jialing
    Zhang, Jiawei
    [J]. 2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 623 - 628
  • [22] Deep Reinforcement Learning for Humanoid Robot Dribbling
    Muzio, Alexandre F., V
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    [J]. 2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 246 - 251
  • [23] Deep Reinforcement Learning for Humanoid Robot Behaviors
    Alexandre F. V. Muzio
    Marcos R. O. A. Maximo
    Takashi Yoneyama
    [J]. Journal of Intelligent & Robotic Systems, 2022, 105
  • [24] A Push Recovery Strategy for a Passively Compliant Humanoid Robot using Decentralized LQR Controllers
    Spyrakos-Papastavridis, Emmanouil
    Medrano-Cerda, Gustavo A.
    Tsagarakis, Nikos G.
    Dai, Jian S.
    Caldwell, Darwin G.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2013,
  • [25] Humanoid Push Recovery
    Stephens, Benjamin
    [J]. HUMANOIDS: 2007 7TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, 2007, : 589 - 595
  • [26] On the Emergence of Whole-Body Strategies From Humanoid Robot Push-Recovery Learning
    Ferigo, Diego
    Camoriano, Raffaello
    Viceconte, Paolo Maria
    Calandriello, Daniele
    Traversaro, Silvio
    Rosasco, Lorenzo
    Pucci, Daniele
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8561 - 8568
  • [27] Humanoid push recovery using sensory reweighting
    Maalouf, Noel
    Elhajj, Imad H.
    Shammas, Elie
    Asmar, Daniel
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 94 : 208 - 218
  • [28] Push Recovery of a Position-Controlled Humanoid Robot Based on Capture Point Feedback Control
    Shafiee-Ashtiani, Milad
    Yousefi-Koma, Aghil
    Mirjalili, Reihaneh
    Maleki, Hessam
    Karimi, Mojtaba
    [J]. 2017 5TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM 2017), 2017, : 126 - 131
  • [29] Optimal control based push recovery strategy for the iCub humanoid robot with Series Elastic Actuators
    Hu, Yue
    Mombaur, Katja
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 5846 - 5852
  • [30] Locomotion Control Method for Humanoid Robot Based on United Hierarchical Reinforcement Learning
    Liu, Boying
    Ma, Lu
    Liu, Chenju
    Xu, BinChen
    [J]. 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1161 - 1166