On the Emergence of Whole-Body Strategies From Humanoid Robot Push-Recovery Learning

被引:3
|
作者
Ferigo, Diego [1 ,2 ]
Camoriano, Raffaello [3 ,4 ]
Viceconte, Paolo Maria [1 ]
Calandriello, Daniele [3 ,4 ]
Traversaro, Silvio [1 ,5 ]
Rosasco, Lorenzo [3 ,4 ,6 ,7 ,8 ]
Pucci, Daniele [1 ,5 ]
机构
[1] Ist Italian Tecnol, Dynam Interact Control, I-16163 Genoa, Italy
[2] Univ Manchester, Machine Learning & Optimisat, Manchester M13 9PL, Lancs, England
[3] Ist Italiano Tecnol, Lab Computat & Stat Learning IIT MIT, I-16163 Genoa, Italy
[4] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Sapienza Univ Roma, DIAG, I-00185 Rome, Italy
[6] Univ Genoa, MaLGa, I-16126 Genoa, Italy
[7] Univ Genoa, DIBRIS, I-16126 Genoa, Italy
[8] MIT, Ctr Brains Minds & Machines, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Robotics; humanoids; reinforcement learning; whole-body control; LOCOMOTION;
D O I
10.1109/LRA.2021.3076955
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Balancing and push-recovery are essential capabilities enabling humanoid robots to solve complex locomotion tasks. In this context, classical control systems tend to be based on simplified physical models and hard-coded strategies. Although successful in specific scenarios, this approach requires demanding tuning of parameters and switching logic between specifically-designed controllers for handling more general perturbations. We apply model-free Deep Reinforcement Learning for training a general and robust humanoid push-recovery policy in a simulation environment. Our method targets high-dimensional whole-body humanoid control and is validated on the iCub humanoid. Reward components incorporating expert knowledge on humanoid control enable fast learning of several robust behaviors by the same policy, spanning the entire body. We validate our method with extensive quantitative analyses in simulation, including out-of-sample tasks which demonstrate policy robustness and generalization, both key requirements towards real-world robot deployment.
引用
收藏
页码:8561 / 8568
页数:8
相关论文
共 50 条
  • [1] Push-recovery strategies implemented on a compliant humanoid robot
    Hyon, Sang-Ho
    Osu, Rieko
    Otaka, Yohei
    Morimoto, Jun
    [J]. NEUROSCIENCE RESEARCH, 2009, 65 : S183 - S183
  • [2] Partition-Aware Stability Control for Humanoid Robot Push Recovery With Whole-Body Capturability
    Song, Hyunjong
    Peng, William Z.
    Kim, Joo H.
    [J]. JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2024, 16 (01):
  • [3] Humanoid Robot Push-Recovery Strategy Based on CMP Criterion and Angular Momentum Regulation
    Chang, Che-Hsuan
    Huang, Han-Pang
    Hsu, Huan-Kun
    Cheng, Ching-An
    [J]. 2015 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2015, : 761 - 766
  • [4] Development of Push-Recovery control system for humanoid robots using deep reinforcement learning
    Aslan, Emrah
    Arserim, Muhammet Ali
    Ucar, Aysegul
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (10)
  • [5] Benchmarking Whole-Body Controllers on the TALOS Humanoid Robot
    Ramuzat, N.
    Stasse, O.
    Boria, S.
    [J]. FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [6] Development of whole-body emotion expression humanoid robot
    Endo, Nobutsuna
    Momoki, Shimpei
    Zecca, Massimiliano
    Saito, Minoru
    Mizoguchi, Yu
    Itoh, Kazuko
    Takanishi, Atsuo
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 2140 - +
  • [7] Mixed Control for Whole-Body Compliance of a Humanoid Robot
    Ju, Xiaozhu
    Wang, Jiajun
    Han, Gang
    Zhao, Mingguo
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8331 - 8337
  • [8] Human symbiotic humanoid robot with whole-body compliance
    Iwata, H
    Morita, T
    Sugano, S
    [J]. ROMANSY 14 - THEORY AND PRACTICE OF ROBOTS AND MANIPULATORS, 2002, (438): : 537 - 547
  • [9] Learning a Push-Recovery Controller for Quadrupedal Robots
    Li, Peiyang
    Chen, Wei
    Han, Xinyu
    Zhao, Mingguo
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 944 - 949
  • [10] Push Recovery Control for Humanoid Robot using Reinforcement Learning
    Seo, Donghyeon
    Kim, Harin
    Kim, Donghan
    [J]. 2019 THIRD IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2019), 2019, : 488 - 492