On the Emergence of Whole-Body Strategies From Humanoid Robot Push-Recovery Learning

被引:3
|
作者
Ferigo, Diego [1 ,2 ]
Camoriano, Raffaello [3 ,4 ]
Viceconte, Paolo Maria [1 ]
Calandriello, Daniele [3 ,4 ]
Traversaro, Silvio [1 ,5 ]
Rosasco, Lorenzo [3 ,4 ,6 ,7 ,8 ]
Pucci, Daniele [1 ,5 ]
机构
[1] Ist Italian Tecnol, Dynam Interact Control, I-16163 Genoa, Italy
[2] Univ Manchester, Machine Learning & Optimisat, Manchester M13 9PL, Lancs, England
[3] Ist Italiano Tecnol, Lab Computat & Stat Learning IIT MIT, I-16163 Genoa, Italy
[4] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Sapienza Univ Roma, DIAG, I-00185 Rome, Italy
[6] Univ Genoa, MaLGa, I-16126 Genoa, Italy
[7] Univ Genoa, DIBRIS, I-16126 Genoa, Italy
[8] MIT, Ctr Brains Minds & Machines, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Robotics; humanoids; reinforcement learning; whole-body control; LOCOMOTION;
D O I
10.1109/LRA.2021.3076955
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Balancing and push-recovery are essential capabilities enabling humanoid robots to solve complex locomotion tasks. In this context, classical control systems tend to be based on simplified physical models and hard-coded strategies. Although successful in specific scenarios, this approach requires demanding tuning of parameters and switching logic between specifically-designed controllers for handling more general perturbations. We apply model-free Deep Reinforcement Learning for training a general and robust humanoid push-recovery policy in a simulation environment. Our method targets high-dimensional whole-body humanoid control and is validated on the iCub humanoid. Reward components incorporating expert knowledge on humanoid control enable fast learning of several robust behaviors by the same policy, spanning the entire body. We validate our method with extensive quantitative analyses in simulation, including out-of-sample tasks which demonstrate policy robustness and generalization, both key requirements towards real-world robot deployment.
引用
收藏
页码:8561 / 8568
页数:8
相关论文
共 50 条
  • [31] Whole-Body Trajectory Optimization for Humanoid Falling
    Wang, Jiuguang
    Whitman, Eric C.
    Stilman, Mike
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 4837 - 4842
  • [32] Learning Capture Points for Humanoid Push Recovery
    Rebula, John
    Canas, Fabian
    Pratt, Jerry
    Goswami, Ambarish
    [J]. HUMANOIDS: 2007 7TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, 2007, : 65 - +
  • [33] Dynamic Stabilization of NAO Humanoid Robot Based on Whole-Body Control with Simulated Annealing
    Kashyap, Abhishek Kumar
    Parhi, Dayal R.
    Kumar, Saroj
    [J]. INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2020, 17 (03)
  • [34] Coordinated Whole-body Motion Planning for a Humanoid Robot used on Orbit and Planetary Surface
    Xu, Wenfu
    Zheng, Yanning
    Hu, Bingshan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 312 - 317
  • [35] Whole-Body Humanoid Control from Upper-Body Task Specifications
    Bin Hammam, Ghassan
    Orin, David E.
    Dariush, Behzad
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 3398 - 3405
  • [36] A whole-body support pose taxonomy for multi-contact humanoid robot motions
    Borras, Julia
    Mandery, Christian
    Asfour, Tamim
    [J]. SCIENCE ROBOTICS, 2017, 2 (13)
  • [37] Whole-body Motion Input Method for Bipedal Humanoid Robot with Support Leg Detection
    Yonekura, Kenta
    Nakaoka, Shin'ichiro
    Yokoi, Kazuhito
    [J]. 2012 12TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2012, : 853 - 858
  • [38] A Balance Feedback Interface for Whole-Body Teleoperation of a Humanoid Robot and Implementation in the HERMES System
    Ramos, Joao
    Wang, Albert
    Ubellacker, Wyatt
    Mayo, John
    Kim, Sangbae
    [J]. 2015 IEEE-RAS 15TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2015, : 844 - 850
  • [39] Whole-Body Dynamics for Humanoid Robot Fall Protection Trajectory Generation with Wall Support
    Zuo, Weilong
    Gao, Junyao
    Liu, Jiongnan
    Wu, Taiping
    Xin, Xilong
    [J]. BIOMIMETICS, 2024, 9 (04)
  • [40] A standardized benchmark for humanoid whole-body manipulation
    Thibault, William
    Chavez, Francisco Javier Andrade
    Mombaur, Katja
    [J]. 2022 IEEE-RAS 21ST INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2022, : 608 - 615