On the maximum size of stepwise irregular graphs

被引:4
|
作者
Buyantogtokh, Lkhagva [1 ]
Azjargal, Enkhbayar [1 ]
Horoldagva, Batmend [1 ]
Dorjsembe, Shiikhar [1 ]
Adiyanyam, Damchaa [1 ]
机构
[1] Mongolian Natl Univ Educ, Dept Math, Baga Toiruu 14, Ulaanbaatar, Mongolia
关键词
Irregularity; Maximum degree; Stepwise irregular graph; Bipartite graph; INDEXES;
D O I
10.1016/j.amc.2020.125683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Gutman introduced the class of stepwise irregular graphs and studied their properties. A graph is stepwise irregular if the difference between the degrees of any two ad jacent vertices is exactly one. In this paper, we get some upper bounds on the maximum degree and sharp upper bounds on the size of stepwise irregular graphs. Furthermore, we completely characterize the graphs with maximum size among all connected stepwise irregular graphs of the given order. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The Maximum Size of C4-Free Planar Graphs
    Zhou, Guofei
    Chen, Yaojun
    [J]. ARS COMBINATORIA, 2017, 131 : 31 - 41
  • [42] Maximum graphs with unique minimum dominating set of size two
    Fraboni, Michael
    Shank, Nathan
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 46 : 91 - 99
  • [43] On -Diagonal Colorings of Embedded Graphs of Low Maximum Face Size
    Daniel P. Sanders
    Yue Zhao
    [J]. Graphs and Combinatorics, 1998, 14 : 81 - 94
  • [44] DECOMPOSITIONS OF GRAPHS INTO FORESTS OF EQUAL SIZE AND WITH BOUNDED MAXIMUM DEGREES
    TRUSZCZYNSKI, M
    [J]. ARS COMBINATORIA, 1986, 21 : 201 - 215
  • [45] On the maximum size of resistant subgraphs in graphs with given average threshold
    Andavari, Mitra Nemati
    Zaker, Manouchehr
    [J]. UTILITAS MATHEMATICA, 2018, 107 : 251 - 264
  • [46] Graphs with maximum size and given paired-domination number
    Henning, Michael A.
    McCoy, John
    Southey, Justin
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 170 : 72 - 82
  • [47] Maximum size of a minimum watching system and the graphs achieving the bound
    Auger, David
    Charon, Irene
    Hudry, Olivier
    Lobstein, Antoine
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 164 : 20 - 33
  • [48] The Size of Edge Chromatic Critical Graphs with Maximum Degree 6
    Luo, Rong
    Miao, Lianying
    Zhao, Yue
    [J]. JOURNAL OF GRAPH THEORY, 2009, 60 (02) : 149 - 171
  • [49] Neighbourly irregular graphs
    Bhragsam, SG
    Ayyaswamy, SK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (03): : 389 - 399
  • [50] ON NEIGHBOURLY IRREGULAR GRAPHS
    Walikar, H. B.
    Halkarni, S. B.
    Ramane, H. S.
    Tavakoli, M.
    Ashrafi, A. R.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (01): : 31 - 39