The Maximum Size of C4-Free Planar Graphs

被引:0
|
作者
Zhou, Guofei [1 ]
Chen, Yaojun [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A planar graph is called C-4-free if it has no cycles of length four. Let f (n, C-4) denote the maximum size of a C-4-free planar graph with order n. In this paper, it is shown that f (n, C-4) = left perpendicular 15/7 (n-2)right perpendicular - mu for n >= 30, where mu, = 1 if n equivalent to 3(mod 7) or n = 32, 33,37, and mu = 0 otherwise.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 50 条
  • [1] The maximum spectral radius of C4-free graphs of given order and size
    Nikiforov, Vladimir
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) : 2898 - 2905
  • [2] Extremal C4-Free/C5-Free Planar Graphs
    Dowden, Chris
    [J]. JOURNAL OF GRAPH THEORY, 2016, 83 (03) : 213 - 230
  • [3] Adjacency matrices of polarity graphs and of other C4-free graphs of large size
    Abreu, M.
    Balbuena, C.
    Labbate, D.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) : 221 - 233
  • [4] Polarity graphs and C4-free multipartite graphs
    Goncalves, Claudia J. F.
    Monte Carmelo, Emerson L.
    Nakaoka, Irene N.
    [J]. PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 437 - 444
  • [5] Adjacency matrices of polarity graphs and of other C4-free graphs of large size
    M. Abreu
    C. Balbuena
    D. Labbate
    [J]. Designs, Codes and Cryptography, 2010, 55 : 221 - 233
  • [6] Large cliques in C4-free graphs
    Gyárfás, A
    Hubenko, A
    Solymosi, J
    [J]. COMBINATORICA, 2002, 22 (02) : 269 - 274
  • [7] Cliques in the Union of C4-Free Graphs
    Othman, Abeer
    Berger, Eli
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (04) : 607 - 612
  • [8] Universality vs Genericity and C4-free graphs
    Panagiotopoulos, Aristotelis
    Tent, Katrin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [9] Which graphs can be counted in C4-free graphs?
    Conlon, David
    Fox, Jacob
    Sudakov, Benny
    Zhao, Yufei
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (06) : 2413 - 2432
  • [10] The Final Size of the C4-Free Process
    Picollelli, Michael E.
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (06): : 939 - 955