The Algebraic Integrability of the Quantum Toda Lattice and the Radon Transform

被引:0
|
作者
Ikeda, Kaoru [1 ]
机构
[1] Keio Univ, Ctr Integrat Math Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
关键词
Toda lattice; Quantum completely integrable systems; Algebraic integrability; Radon transform;
D O I
10.1007/s00041-008-9048-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the maximal commutative ring of partial differential operators which includes the quantum completely integrable system defined by the quantum Toda lattice. Kostant shows that the image of the generalized Harish-Chandra homomorphism of the center of the enveloping algebra is commutative (Kostant in Invent. Math. 48: 101-184, 1978). We demonstrate the commutativity of the ring of partial differential operators whose principal symbols are (N) over bar -invariant. Our commutative ring includes the commutative system of Kostant (Invent. Math. 48: 101-184, 1978). The main tools in this paper are Fourier integral operators and Radon transforms.
引用
收藏
页码:80 / 100
页数:21
相关论文
共 50 条
  • [21] THERMODYNAMICS AND CORRELATIONS OF THE QUANTUM TODA LATTICE
    CUCCOLI, A
    SPICCI, M
    TOGNETTI, V
    VAIA, R
    PHYSICAL REVIEW B, 1992, 45 (17): : 10127 - 10130
  • [22] DIRECTED POLYMERS AND THE QUANTUM TODA LATTICE
    O'Connell, Neil
    ANNALS OF PROBABILITY, 2012, 40 (02): : 437 - 458
  • [23] QUANTUM TOMOGRAPHY AND THE QUANTUM RADON TRANSFORM
    Ibort, Alberto
    Lopez-Yela, Alberto
    INVERSE PROBLEMS AND IMAGING, 2021, 15 (05) : 893 - 928
  • [24] Quantum cohomology and the periodic Toda lattice
    Guest, MA
    Otofuji, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) : 475 - 487
  • [25] On the spectral resolution of the quantum Toda lattice
    Ikeda, K
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (02) : 404 - 424
  • [26] Quantum Cohomology and the Periodic Toda Lattice
    Martin A. Guest
    T. Otofuji
    Communications in Mathematical Physics, 2001, 217 : 475 - 487
  • [27] NON-INTEGRABILITY OF THE TRUNCATED TODA LATTICE HAMILTONIAN AT ANY ORDER
    YOSHIDA, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (04) : 529 - 538
  • [28] LAX REPRESENTATION AND COMPLETE-INTEGRABILITY FOR THE PERIODIC RELATIVISTIC TODA LATTICE
    BRUSCHI, M
    RAGNISCO, O
    PHYSICS LETTERS A, 1989, 134 (06) : 365 - 370
  • [29] Toda lattice field theories, discrete W algebras, Toda lattice hierarchies and quantum groups
    Bonora, L
    Colatto, LP
    Constantinidis, CP
    PHYSICS LETTERS B, 1996, 387 (04) : 759 - 768
  • [30] Toda lattice with corrections via inverse scattering transform
    Zhen, Yanpei
    Wang, Xiaodan
    Zhu, Junyi
    MODERN PHYSICS LETTERS B, 2021, 35 (04):