DIRECTED POLYMERS AND THE QUANTUM TODA LATTICE

被引:122
|
作者
O'Connell, Neil [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
ANNALS OF PROBABILITY | 2012年 / 40卷 / 02期
关键词
Random matrices; Whittaker functions; SIMPLE EXCLUSION PROCESS; PITMANS 2M-X THEOREM; WHITTAKER FUNCTIONS; BROWNIAN MOTIONS; INITIAL CONDITION; RANDOM MATRICES; FREE-ENERGY; REPRESENTATION; EIGENFUNCTIONS; CHAIN;
D O I
10.1214/10-AOP632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We characterize the law of the partition function of a Brownian directed polymer model in terms of a diffusion process associated with the quantum Toda lattice. The proof is via a multidimensional generalization of a theorem of Matsumoto and Yor concerning exponential functionals of Brownian motion. It is based on a mapping which can be regarded as a geometric variant of the RSK correspondence.
引用
收藏
页码:437 / 458
页数:22
相关论文
共 50 条
  • [1] THE QUANTUM TODA LATTICE
    BRUSCHI, M
    LEVI, D
    OLSHANETSKY, MA
    PERELOMOV, AM
    RAGNISCO, O
    PHYSICS LETTERS A, 1982, 88 (01) : 7 - 12
  • [2] Thermodynamics of the quantum Toda lattice
    Matsuyama, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (16): : 4837 - 4852
  • [3] QUANTUM-MECHANICAL TODA LATTICE
    GUTZWILLER, MC
    ANNALS OF PHYSICS, 1980, 124 (02) : 347 - 381
  • [4] THERMODYNAMICS AND CORRELATIONS OF THE QUANTUM TODA LATTICE
    CUCCOLI, A
    SPICCI, M
    TOGNETTI, V
    VAIA, R
    PHYSICAL REVIEW B, 1992, 45 (17): : 10127 - 10130
  • [5] A Fourier transform for the quantum Toda lattice
    Lonergan, Gus
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (05): : 4577 - 4615
  • [6] Quantum cohomology and the periodic Toda lattice
    Guest, MA
    Otofuji, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) : 475 - 487
  • [7] A Fourier transform for the quantum Toda lattice
    Gus Lonergan
    Selecta Mathematica, 2018, 24 : 4577 - 4615
  • [8] On the spectral resolution of the quantum Toda lattice
    Ikeda, K
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (02) : 404 - 424
  • [9] Quantum Cohomology and the Periodic Toda Lattice
    Martin A. Guest
    T. Otofuji
    Communications in Mathematical Physics, 2001, 217 : 475 - 487
  • [10] Toda lattice field theories, discrete W algebras, Toda lattice hierarchies and quantum groups
    Bonora, L
    Colatto, LP
    Constantinidis, CP
    PHYSICS LETTERS B, 1996, 387 (04) : 759 - 768