Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System

被引:140
|
作者
Redding, Sy [1 ]
Sternberg, Samuel H. [2 ]
Marshall, Myles [8 ]
Gibb, Bryan [8 ]
Bhat, Prashant [3 ]
Guegler, Chantal K. [2 ]
Wiedenheft, Blake [4 ]
Doudna, Jennifer A. [2 ,3 ,5 ,6 ,7 ]
Greene, Eric C. [8 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA
[5] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[8] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
基金
美国国家科学基金会;
关键词
ADAPTIVE BACTERIAL IMMUNITY; SPACER ACQUISITION; RNA; TARGET; INTERFERENCE; DEGRADATION; PROKARYOTES; PROTEIN; MECHANISMS; NUCLEASE;
D O I
10.1016/j.cell.2015.10.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.
引用
收藏
页码:854 / 865
页数:12
相关论文
共 50 条
  • [41] The Phylogenetic Study of the CRISPR-Cas System in Enterobacteriaceae
    Simran Krishnakant Kushwaha
    Aryahi A. Kumar
    Hardik Gupta
    Sandhya Amol Marathe
    Current Microbiology, 2023, 80
  • [42] A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair
    Babu, Mohan
    Beloglazova, Natalia
    Flick, Robert
    Graham, Chris
    Skarina, Tatiana
    Nocek, Boguslaw
    Gagarinova, Alla
    Pogoutse, Oxana
    Brown, Greg
    Binkowski, Andrew
    Phanse, Sadhna
    Joachimiak, Andrzej
    Koonin, Eugene V.
    Savchenko, Alexei
    Emili, Andrew
    Greenblatt, Jack
    Edwards, Aled M.
    Yakunin, Alexander F.
    MOLECULAR MICROBIOLOGY, 2011, 79 (02) : 484 - 502
  • [43] Transposon-Associated CRISPR-Cas System: A Powerful DNA Insertion Tool
    Ma, Wang
    Xu, Ying-Shuang
    Sun, Xiao-Man
    Huang, He
    TRENDS IN MICROBIOLOGY, 2021, 29 (07) : 565 - 568
  • [44] Porphyromonas gingivalis and its CRISPR-Cas system
    Chen, Tsute
    Olsen, Ingar
    JOURNAL OF ORAL MICROBIOLOGY, 2019, 11 (01):
  • [45] Engineering Translational Activators with CRISPR-Cas System
    Du, Pei
    Miao, Chensi
    Lou, Qiuli
    Wang, Zefeng
    Lou, Chunbo
    ACS SYNTHETIC BIOLOGY, 2016, 5 (01): : 74 - 80
  • [46] Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system
    Halpin-Healy, Tyler S.
    Klompe, Sanne E.
    Sternberg, Samuel H.
    Fernandez, Israel S.
    NATURE, 2020, 577 (7789) : 271 - +
  • [47] DNA interference states of the hypercompact CRISPR-Casφ effector
    Pausch, Patrick
    Soczek, Katarzyna M.
    Herbst, Dominik A.
    Tsuchida, Connor A.
    Al-Shayeb, Basem
    Banfield, Jillian F.
    Nogales, Eva
    Doudna, Jennifer A.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2021, 28 (08) : 652 - +
  • [48] CRISPR-Cas: To Take Up DNA or Not-That Is the Question
    Weinberger, Ariel D.
    Gilmore, Michael S.
    CELL HOST & MICROBE, 2012, 12 (02) : 125 - 126
  • [49] CRISPR-Cas immunity, DNA repair and genome stability
    Cubbon, Andrew
    Ivancic-Bace, Ivana
    Bolt, Edward L.
    BIOSCIENCE REPORTS, 2018, 38 : 1 - 10
  • [50] The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    Sapranauskas, Rimantas
    Gasiunas, Giedrius
    Fremaux, Christophe
    Barrangou, Rodolphe
    Horvath, Philippe
    Siksnys, Virginijus
    NUCLEIC ACIDS RESEARCH, 2011, 39 (21) : 9275 - 9282