Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System

被引:140
|
作者
Redding, Sy [1 ]
Sternberg, Samuel H. [2 ]
Marshall, Myles [8 ]
Gibb, Bryan [8 ]
Bhat, Prashant [3 ]
Guegler, Chantal K. [2 ]
Wiedenheft, Blake [4 ]
Doudna, Jennifer A. [2 ,3 ,5 ,6 ,7 ]
Greene, Eric C. [8 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA
[5] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[8] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
基金
美国国家科学基金会;
关键词
ADAPTIVE BACTERIAL IMMUNITY; SPACER ACQUISITION; RNA; TARGET; INTERFERENCE; DEGRADATION; PROKARYOTES; PROTEIN; MECHANISMS; NUCLEASE;
D O I
10.1016/j.cell.2015.10.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.
引用
收藏
页码:854 / 865
页数:12
相关论文
共 50 条
  • [31] Lamarckian realities: the CRISPR-Cas system and beyond
    Jablonka, Eva
    BIOLOGY & PHILOSOPHY, 2019, 34 (01)
  • [32] The Phylogenetic Study of the CRISPR-Cas System in Enterobacteriaceae
    Kushwaha, Simran Krishnakant
    Kumar, Aryahi A.
    Gupta, Hardik
    Marathe, Sandhya Amol
    CURRENT MICROBIOLOGY, 2023, 80 (06)
  • [33] A hypothesis: CRISPR-Cas as a minimal cognitive system
    Yakura, Hidetaka
    ADAPTIVE BEHAVIOR, 2019, 27 (03) : 167 - 173
  • [34] CRISPR-Cas System for RNA Detection and Imaging
    Siyu Chen
    Rujia Wang
    Chunyang Lei
    Zhou Nie
    Chemical Research in Chinese Universities, 2020, 36 : 157 - 163
  • [35] The CRISPR-Cas system: beyond genome editing
    Moineau, Sylvain
    Croteau, Felix R.
    Rousseau, Genevieve M.
    M S-MEDECINE SCIENCES, 2018, 34 (10): : 813 - 819
  • [36] CRISPR-Cas system for biomedical diagnostic platforms
    Wang, Zhen
    Cui, Wenguo
    VIEW, 2020, 1 (03)
  • [37] Crispr-Cas, The Prokaryotic Adaptive Immune System
    Marraffini, Luciano
    FASEB JOURNAL, 2016, 30
  • [38] The Impact of CRISPR-Cas System on Antiviral Therapy
    Bayat, Hadi
    Naderi, Fatemeh
    Khan, Amjad Hayat
    Memarnejadian, Arash
    Rahimpour, Azam
    ADVANCED PHARMACEUTICAL BULLETIN, 2018, 8 (04) : 591 - 597
  • [39] Applications of CRISPR-Cas System in Tumor Biology
    Ma, Mengdan
    Liu, Yuchen
    Huang, Weiren
    ONCOLOGIE, 2021, 23 (04) : 463 - 492
  • [40] Lamarckian realities: the CRISPR-Cas system and beyond
    Eva Jablonka
    Biology & Philosophy, 2019, 34