Cluster Monte Carlo and dynamical scaling for long-range interactions

被引:10
|
作者
Flores-Sola, Emilio [1 ,2 ,3 ]
Weigel, Martin [1 ,3 ]
Kenna, Ralph [1 ,3 ]
Berche, Bertrand [2 ,3 ]
机构
[1] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[2] Univ Lorraine, Grp Phys Stat, Inst Jean Lamour, CNRS,UMR 7198, F-54506 Vandoeuvre Les Nancy, France
[3] Doctoral Coll Stat Phys Complex Syst, Leipzig Lorraine Lviv Coventry L4, D-04009 Leipzig, Germany
来源
关键词
SPIN MODELS; MEAN-FIELD; BEHAVIOR;
D O I
10.1140/epjst/e2016-60338-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O(N-2) to O(N ln N) or even O(N), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.
引用
收藏
页码:581 / 594
页数:14
相关论文
共 50 条