Cluster Monte Carlo and dynamical scaling for long-range interactions

被引:10
|
作者
Flores-Sola, Emilio [1 ,2 ,3 ]
Weigel, Martin [1 ,3 ]
Kenna, Ralph [1 ,3 ]
Berche, Bertrand [2 ,3 ]
机构
[1] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[2] Univ Lorraine, Grp Phys Stat, Inst Jean Lamour, CNRS,UMR 7198, F-54506 Vandoeuvre Les Nancy, France
[3] Doctoral Coll Stat Phys Complex Syst, Leipzig Lorraine Lviv Coventry L4, D-04009 Leipzig, Germany
来源
关键词
SPIN MODELS; MEAN-FIELD; BEHAVIOR;
D O I
10.1140/epjst/e2016-60338-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O(N-2) to O(N ln N) or even O(N), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.
引用
收藏
页码:581 / 594
页数:14
相关论文
共 50 条
  • [31] The split Monte Carlo method: Efficient sampling by separating long-range and short-range potential interactions.
    Bernacki, K
    Hetenyi, B
    Berne, BJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U482 - U482
  • [32] MONTE-CARLO SIMULATION OF A ONE DIMENSIONAL CLASSICAL HEISENBERG-MODEL WITH LONG-RANGE INTERACTIONS
    ROMANO, S
    LIQUID CRYSTALS, 1989, 4 (05) : 483 - 495
  • [33] AUXILIARY-FIELD QUANTUM MONTE-CARLO CALCULATIONS FOR SYSTEMS WITH LONG-RANGE REPULSIVE INTERACTIONS
    SILVESTRELLI, PL
    BARONI, S
    CAR, R
    PHYSICAL REVIEW LETTERS, 1993, 71 (08) : 1148 - 1151
  • [34] Dynamical scaling of correlations generated by short- and long-range dissipation
    Seetharam, K.
    Lerose, A.
    Fazio, R.
    Marino, J.
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [35] LONG-RANGE ORDER IN THE SCALING BEHAVIOR OF HYPERBOLIC DYNAMICAL-SYSTEMS
    PAOLI, P
    POLITI, A
    BADII, R
    PHYSICA D, 1989, 36 (03): : 263 - 286
  • [36] Subleading long-range interactions and violations of finite size scaling
    Dantchev, D
    Rudnick, J
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (02): : 251 - 268
  • [37] Subleading long-range interactions and violations of finite size scaling
    D. Dantchev
    J. Rudnick
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 251 - 268
  • [38] DYNAMICAL PROPERTIES OF GAUSSIAN CHAINS AND LOOPS WITH LONG-RANGE INTERACTIONS
    Bock, Wolfgang
    Bornales, Jinky B.
    Streit, Ludwig
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (02) : 233 - 246
  • [39] An account of the statistical and dynamical properties of systems with long-range interactions
    Antonlazzi, A
    Ruffo, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 561 (02): : 143 - 150
  • [40] Synchronization time in a hyperbolic dynamical system with long-range interactions
    Pereira, Rodrigo F.
    Pinto, Sandro E. de S.
    Lopes, Sergio R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (22) : 5279 - 5286