Direct Error Driven Learning for Deep Neural Networks with Applications to Bigdata

被引:5
|
作者
Krishnan, R. [1 ]
Jagannathan, S. [1 ]
Samaranayake, V. A. [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
generalization error; vanishing gradients; bigdata; heterogeneity; noise;
D O I
10.1016/j.procs.2018.10.508
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, generalization error for traditional learning regimes-based classification is demonstrated to increase in the presence of bigdata challenges such as noise and heterogeneity. To reduce this error while mitigating vanishing gradients, a deep neural network (NN)-based framework with a direct error-driven learning scheme is proposed. To reduce the impact of heterogeneity, an overall cost comprised of the learning error and approximate generalization error is defined where two NNs are utilized to estimate the costs respectively. To mitigate the issue of vanishing gradients, a direct error-driven learning regime is proposed where the error is directly utilized for learning. It is demonstrated that the proposed approach improves accuracy by 7 % over traditional learning regimes. The proposed approach mitigated the vanishing gradient problem and improved generalization by 6%. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 50 条
  • [21] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [22] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251
  • [23] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [24] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [25] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234
  • [26] Collaborative Learning for Deep Neural Networks
    Song, Guocong
    Chai, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [27] Big learning and deep neural networks
    Montavon, Grégoire
    Müller, Klaus-Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 419 - 420
  • [28] Multiplierless Neural Networks for Deep Learning
    Banduka, Maja Lutovac
    Lutovac, Miroslav
    2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024, 2024, : 262 - 265
  • [29] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673
  • [30] Deep Energy: Task Driven Training of Deep Neural Networks
    Golts, Alona
    Freedman, Daniel
    Elad, Michael
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (02) : 324 - 338