Non-parametric adaptive estimation of the drift for a jump diffusion process

被引:21
|
作者
Schmisser, Emeline [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
Jump diffusions; Nonparametric estimation; Drift estimation; Model selection; BOUNDS;
D O I
10.1016/j.spa.2013.09.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a jump diffusion process (X-t)(t >= 0) observed at discrete times t = 0, Delta, ..., n Delta. The sampling interval Delta tends to 0 and n Delta tends to infinity. We assume that (X-t)(t >= 0) is ergodic, strictly stationary and exponentially beta-mixing. We use a penalised least-square approach to compute two adaptive estimators of the drift function b. We provide bounds for the risks of the two estimators. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:883 / 914
页数:32
相关论文
共 50 条
  • [21] Non-parametric estimation of historical volatility
    Randal, JA
    Thomson, PJ
    Lally, MT
    QUANTITATIVE FINANCE, 2004, 4 (04) : 427 - 440
  • [22] Detection threshold for non-parametric estimation
    Abdourrahmane M. Atto
    Dominique Pastor
    Gregoire Mercier
    Signal, Image and Video Processing, 2008, 2 : 207 - 223
  • [23] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [24] New ideas in non-parametric estimation
    Pistone, G
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 159 - 164
  • [25] Non-parametric estimation of the residual distribution
    Akritas, MG
    Van Keilegom, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 549 - 567
  • [26] Non-parametric estimation of morphological lopsidedness
    Giese, Nadine
    van der Hulst, Thijs
    Serra, Paolo
    Oosterloo, Tom
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (02) : 1656 - 1673
  • [27] Non-parametric estimation of signals vectors
    Marchuk, L.A.
    Giniyatullin, N.F.
    Borisov, K.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (09): : 31 - 39
  • [28] Non-Parametric Estimation of Technical Progress
    Kevin J. Fox
    Journal of Productivity Analysis, 1998, 10 : 235 - 250
  • [29] NON-PARAMETRIC ESTIMATION OF CONDITIONAL QUANTILES
    SAMANTA, M
    STATISTICS & PROBABILITY LETTERS, 1989, 7 (05) : 407 - 412
  • [30] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352