Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study

被引:57
|
作者
Kahlaoui, Radhouene [1 ]
Arbi, Kamel [2 ,3 ]
Sobrados, Isabel [2 ]
Jimenez, Ricardo [2 ]
Sanz, Jesus [2 ]
Ternane, Riadh [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Lab Applicat Chim Ressources & Subst Nat & Enviro, Zarzouna 7021, Bizerte, Tunisia
[2] CSIC, ICMM, Madrid 28049, Spain
[3] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Mat & Environm, Microlab, Delft, Netherlands
关键词
SOLID ELECTROLYTES; NEUTRON-DIFFRACTION; IONIC-CONDUCTIVITY; MAS NMR; CONDUCTORS; TRANSITION; NUCLEAR; NA;
D O I
10.1021/acs.inorgchem.6b02274
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Rhombohedral NASICON compounds with general formula Li1+xTi2-xScx(PO4)(3) (0 <= x <= 0.5) have been prepared using a conventional solid-state reaction and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and impedance spectroscopy. The partial substitution of Ti4+ by Sc3+ and Li+ in pristine LiTi2(PO4)(3) increases unit-cell dimensions and the number of charge carriers. In Sc-rich samples, the analysis of XRD data and Li-6/Li-7, P-31, and Sc-45 MAS NMR spectra confirms the presence of secondary LiScO2 and LiScP2O7 phases that reduce the amount of lithium incorporated in the NASICON phase. In samples with x < 0.3, electrostatic repulsions between Li ions located at M1 and M3 sites increase Li mobility. For x >= 0.3, ionic conductivity decreases because of secondary nonconducting phases formed at grain boundaries of the NASICON particles (core-shell structures). For x = 0.2, high bulk conductivity (2.5 x 10(-3) S.cm(-1)) and low activation energy (E-a = 0.25 eV) measured at room temperature make Li1.2Ti1.8Sc0.2(PO4)(3) one of the best lithium ionic conductors reported in the literature. In this material, the vacancy arrangement enhances Li conductivity.
引用
收藏
页码:1216 / 1224
页数:9
相关论文
共 50 条
  • [21] High lithium ionic conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON series
    Maldonado-Manso, P
    Losilla, ER
    Martínez-Lara, M
    Aranda, MAG
    Bruque, S
    Mouahid, FE
    Zahir, M
    CHEMISTRY OF MATERIALS, 2003, 15 (09) : 1879 - 1885
  • [22] Study of NASICON Structured Lithium Ion Conductor Li1+xAlxZr2-x(PO4)3
    Lu, Xiaojuan
    Feng, Xue
    Lin, Wenwei
    Liu, Haitao
    Zeng, Yunjie
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, 2015, 23 : 227 - 230
  • [23] NMR and electric impedance study of lithium mobility in fast ion conductors LiTi2-xZrx(PO4)3 (0≤x≤2)
    Arbi, K.
    Tabellout, M.
    Sanz, J.
    SOLID STATE IONICS, 2010, 180 (40) : 1613 - 1619
  • [24] On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials
    Arbi, K.
    Jimenez, R.
    Salkus, T.
    Orliukas, A. F.
    Sanz, J.
    SOLID STATE IONICS, 2015, 271 : 28 - 33
  • [25] Extensive lithium disorder in Li1.5Fe0.5Ti1.5(PO4)3 Nasicon by neutron diffraction, and the Li1+xFexTi2-x(PO4)3 phase diagram
    Catti, M
    Comotti, A
    Di Blas, S
    Ibberson, RM
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (05) : 835 - 839
  • [26] Synthesis of Nasicon Structured Solid Electrolyte Li1+xTi2-xAlx (PO4)3 for Lithium-Ion Batteries
    Kimpa, Mohammed Isah
    Mayzan, Mohd Zulhilmi
    Esa, Fahmirrudin
    Yabagi, Jibrin Alhaji
    Nmaya, Muhammad Muhammad
    Agam, Mohd Arif
    ADVANCED SCIENCE LETTERS, 2018, 24 (06) : 4348 - 4352
  • [27] Characterization of Lithium Insertion into NASICON-Type Li1+xTi2-xAlx (PO4)3 and Its Electrochemical Behavior
    Arbi, K.
    Kuhn, A.
    Sanz, J.
    Garcia-Alvarado, F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) : A654 - A659
  • [28] Lithium exchange processes in the conduction network of the nasicon LiTi2-xZrx(PO4)3 series (0 ≤ x ≤ 2)
    Arbi, K
    París, MA
    Sanz, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13): : 6454 - 6457
  • [29] High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)
    Arbi, K.
    Bucheli, W.
    Jimenez, R.
    Sanz, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) : 1477 - 1484
  • [30] Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7.: A parallel NMR and electric impedance study
    Arbi, K
    Mandal, S
    Rojo, JM
    Sanz, J
    CHEMISTRY OF MATERIALS, 2002, 14 (03) : 1091 - 1097