On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials

被引:19
|
作者
Arbi, K. [1 ]
Jimenez, R. [1 ]
Salkus, T. [2 ]
Orliukas, A. F. [2 ]
Sanz, J. [1 ]
机构
[1] Mat Sci Inst Madrid ICMM CSIC, Madrid 28049, Spain
[2] Vilnius Univ, Fac Phys, LT-10222 Vilnius, Lithuania
关键词
Nasicon compounds; Neutron diffraction; NMR and impedance spectroscopy; Solid electrolytes; Lithium batteries; IONIC-CONDUCTIVITY; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURES; PHASE-TRANSITION; NMR; CONDUCTORS; IMPEDANCE; MOBILITY; LI1+XTI2-XALX(PO4)(3); TRANSPORT;
D O I
10.1016/j.ssi.2014.10.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural features responsible for outstanding Li conductivity of Li1+xRxTi2-x(PO4)(3) (LRTP) Nasicon samples (0 <= x <= 0.6 and R = Al, Sc, In) prepared by the ceramic route have been analyzed by XRD, ND, MAS-NMR and impedance spectroscopy. The structural analysis showed that all samples display the rhombohedral (S.G. R-3c) symmetry. The structural site occupancy has been investigated by Li-7, Al-27/Sc-45 and P-31 MAS-NMR spectroscopy. The Fourier map differences deduced from high-resolution ND patterns of LAITP samples revealed that Li ions occupy Li1 sites and to a lower extent Li3/Li3' sites inside Li2 cavities. The location of Li at 3 sites minimizes electrostatic Li (Li1-Li3) repulsions, enhancing local mobility in LRTP samples. A maximum of conductivity was detected for 0.2 <= x <= 0.4, when a significant amount of vacant Li1 sites was created at the intersection of conduction pathways. The increment of vacant Li1 sites explains the existence of two Li motion regimes detected by Li-7 NMR and impedance spectroscopy. In the low temperature regime, activation energy and migration entropy of Li have been related by the Meyer-Neldel relationship. In the high-temperature regime, further investigation is required to assess the role of vacancy in lithium conductivity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [1] Cation mobility in Li1 + xTi2 − xCrx(PO4)3 NASICON-type phosphates
    A. I. Svitan’ko
    S. A. Novikova
    D. V. Safronov
    A. B. Yaroslavtsev
    Inorganic Materials, 2011, 47 : 1391 - 1395
  • [2] Cation mobility in Li1 + xHf2 − xScx(PO4)3 NASICON-type phosphates
    Yu. O. Korepina
    L. Sh. Bigeeva
    A. B. Il’in
    A. I. Svitan’ko
    S. A. Novikova
    A. B. Yaroslavtsev
    Inorganic Materials, 2013, 49 : 283 - 287
  • [3] Cation mobility in modified Li1 − xTi2 − xNbx(PO4)3 lithium titanium NASICON phosphates
    I. Yu. Pinus
    I. A. Stenina
    A. I. Rebrov
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1177 - 1180
  • [4] Cation mobility in modified Li1 + xTi2 − xGax(PO4)3 lithium titanium NASICON phosphates
    I. Yu. Pinus
    I. V. Arkhangel’skii
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1173 - 1176
  • [5] Formation and Mobility of Defects in the NASICON-Type Compounds Li1 — xZr2 — xNbx(PO4)3 and Li1 + xZr2 — xScx(PO4)3
    I. A. Stenina
    E. V. Antipov
    A. I. Rebrov
    R. V. Shpanchenko
    A. B. Yaroslavtsev
    Doklady Chemistry, 2002, 382 : 46 - 49
  • [6] High lithium ionic conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON series
    Maldonado-Manso, P
    Losilla, ER
    Martínez-Lara, M
    Aranda, MAG
    Bruque, S
    Mouahid, FE
    Zahir, M
    CHEMISTRY OF MATERIALS, 2003, 15 (09) : 1879 - 1885
  • [7] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2−x(PO4)3 NASICON-type materials
    Radhouene Kahlaoui
    Kamel Arbi
    Ricardo Jimenez
    Isabel Sobrados
    Jesus Sanz
    Riadh Ternane
    Journal of Materials Science, 2020, 55 : 8464 - 8476
  • [8] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2-x(PO4)3 NASICON-type materials
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (20) : 8464 - 8476
  • [9] Phase transitions and ion transport in NASICON materials of composition Li1 + xZr2 − xInx(PO4)3(x = 0–1)
    D. V. Safronov
    I. A. Stenina
    A. V. Maksimychev
    S. L. Shestakov
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1697 - 1703
  • [10] New nasicon Li1+xAlxGeyTi2-x-y(PO4)3 compositions with high lithium ionic conductivity
    Maldonado-Manso, Pilar
    Morsli, Khadija
    Mouahid, Fatima-Ezzohra
    Zahir, Mohammed
    Bruoue, Sebastian
    Losilla, Enrique R.
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2007, 32 (06): : 561 - 572