On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials

被引:19
|
作者
Arbi, K. [1 ]
Jimenez, R. [1 ]
Salkus, T. [2 ]
Orliukas, A. F. [2 ]
Sanz, J. [1 ]
机构
[1] Mat Sci Inst Madrid ICMM CSIC, Madrid 28049, Spain
[2] Vilnius Univ, Fac Phys, LT-10222 Vilnius, Lithuania
关键词
Nasicon compounds; Neutron diffraction; NMR and impedance spectroscopy; Solid electrolytes; Lithium batteries; IONIC-CONDUCTIVITY; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURES; PHASE-TRANSITION; NMR; CONDUCTORS; IMPEDANCE; MOBILITY; LI1+XTI2-XALX(PO4)(3); TRANSPORT;
D O I
10.1016/j.ssi.2014.10.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural features responsible for outstanding Li conductivity of Li1+xRxTi2-x(PO4)(3) (LRTP) Nasicon samples (0 <= x <= 0.6 and R = Al, Sc, In) prepared by the ceramic route have been analyzed by XRD, ND, MAS-NMR and impedance spectroscopy. The structural analysis showed that all samples display the rhombohedral (S.G. R-3c) symmetry. The structural site occupancy has been investigated by Li-7, Al-27/Sc-45 and P-31 MAS-NMR spectroscopy. The Fourier map differences deduced from high-resolution ND patterns of LAITP samples revealed that Li ions occupy Li1 sites and to a lower extent Li3/Li3' sites inside Li2 cavities. The location of Li at 3 sites minimizes electrostatic Li (Li1-Li3) repulsions, enhancing local mobility in LRTP samples. A maximum of conductivity was detected for 0.2 <= x <= 0.4, when a significant amount of vacant Li1 sites was created at the intersection of conduction pathways. The increment of vacant Li1 sites explains the existence of two Li motion regimes detected by Li-7 NMR and impedance spectroscopy. In the low temperature regime, activation energy and migration entropy of Li have been related by the Meyer-Neldel relationship. In the high-temperature regime, further investigation is required to assess the role of vacancy in lithium conductivity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [31] Phase transitions and ion conductivity in NASICON-type compounds Li1±xZr2-xMx(PO4)3, M = Ta, Nb, Y, Sc, In
    Stenina, I. A.
    Kislitsyn, M. N.
    Pinus, I. Yu.
    Haile, S. M.
    Yaroslavtsev, A. B.
    DIFFUSION IN SOLIDS - PAST, PRESENT AND FUTURE, 2006, 249 : 255 - 262
  • [32] Distribution and mobility of lithium in NASICON-type Li1-xTi2-xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 146 - 154
  • [33] Defect formation and migration in Nasicon Li1+xAlxTi2-x(PO4)3
    Arjmandi, Hamid R.
    Grieshammer, Steffen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (43) : 24232 - 24238
  • [34] Synthesis and Ionic Conductivity of Complex Phosphates Li1 +xTi1.8 –xFexGe0.2(PO4)3 with NASICON Structure
    I. A. Stenina
    E. O. Taranchenko
    A. B. Ilin
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2023, 68 : 1707 - 1713
  • [35] LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials
    Wang, GX
    Bradhurst, DH
    Dou, SX
    Liu, HK
    JOURNAL OF POWER SOURCES, 2003, 124 (01) : 231 - 236
  • [36] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2-x(PO4)3
    Lakshmanan, Agnes
    Gurusamy, Ramkumar
    Venkatachalam, Sabarinathan
    IONICS, 2023, 29 (12) : 5123 - 5138
  • [37] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2−x(PO4)3
    Agnes Lakshmanan
    Ramkumar Gurusamy
    Sabarinathan Venkatachalam
    Ionics, 2023, 29 : 5123 - 5138
  • [38] NASICON-type Li1+2xZr2-xCax(PO4)3 with high ionic conductivity at room temperature
    Xie, Hui
    Li, Yutao
    Goodenough, John B.
    RSC ADVANCES, 2011, 1 (09) : 1728 - 1731
  • [39] Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study
    Arbi, K.
    Hoelzel, M.
    Kuhn, A.
    Garcia-Alvarado, F.
    Sanz, J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) : 18397 - 18405
  • [40] High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2-x-y(PO4)(3) Solid Electrolyte
    Shang Xuefu
    Nemori, Hiroyoshi
    Mitsuoka, Shigehi
    Xu, Peng
    Matsui, Masaki
    Takeda, Yasuo
    Yamamoto, Osamu
    Imanishi, Nobuyuki
    FRONTIERS IN ENERGY RESEARCH, 2016, 4