Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study

被引:57
|
作者
Kahlaoui, Radhouene [1 ]
Arbi, Kamel [2 ,3 ]
Sobrados, Isabel [2 ]
Jimenez, Ricardo [2 ]
Sanz, Jesus [2 ]
Ternane, Riadh [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Lab Applicat Chim Ressources & Subst Nat & Enviro, Zarzouna 7021, Bizerte, Tunisia
[2] CSIC, ICMM, Madrid 28049, Spain
[3] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Mat & Environm, Microlab, Delft, Netherlands
关键词
SOLID ELECTROLYTES; NEUTRON-DIFFRACTION; IONIC-CONDUCTIVITY; MAS NMR; CONDUCTORS; TRANSITION; NUCLEAR; NA;
D O I
10.1021/acs.inorgchem.6b02274
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Rhombohedral NASICON compounds with general formula Li1+xTi2-xScx(PO4)(3) (0 <= x <= 0.5) have been prepared using a conventional solid-state reaction and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and impedance spectroscopy. The partial substitution of Ti4+ by Sc3+ and Li+ in pristine LiTi2(PO4)(3) increases unit-cell dimensions and the number of charge carriers. In Sc-rich samples, the analysis of XRD data and Li-6/Li-7, P-31, and Sc-45 MAS NMR spectra confirms the presence of secondary LiScO2 and LiScP2O7 phases that reduce the amount of lithium incorporated in the NASICON phase. In samples with x < 0.3, electrostatic repulsions between Li ions located at M1 and M3 sites increase Li mobility. For x >= 0.3, ionic conductivity decreases because of secondary nonconducting phases formed at grain boundaries of the NASICON particles (core-shell structures). For x = 0.2, high bulk conductivity (2.5 x 10(-3) S.cm(-1)) and low activation energy (E-a = 0.25 eV) measured at room temperature make Li1.2Ti1.8Sc0.2(PO4)(3) one of the best lithium ionic conductors reported in the literature. In this material, the vacancy arrangement enhances Li conductivity.
引用
收藏
页码:1216 / 1224
页数:9
相关论文
共 50 条
  • [1] Distribution and mobility of lithium in NASICON-type Li1-xTi2-xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 146 - 154
  • [2] Cation mobility in NASICON compounds Li1-xZr2-xNbx(PO4)3 and Li1+xZr2-xScx(PO4)3
    Stenina, IA
    Aliev, AD
    Antipov, EV
    Velikodnyi, YA
    Rebrov, AI
    Yaroslavtsev, AB
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2002, 47 (10) : 1437 - 1444
  • [3] Cation mobility in Li1+xHf2-xScx(PO4)3 NASICON-type phosphates
    Korepina, Yu. O.
    Bigeeva, L. Sh.
    Il'in, A. B.
    Svitan'ko, A. I.
    Novikova, S. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2013, 49 (03) : 283 - 287
  • [4] Cation mobility in modified Li1 − xTi2 − xNbx(PO4)3 lithium titanium NASICON phosphates
    I. Yu. Pinus
    I. A. Stenina
    A. I. Rebrov
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1177 - 1180
  • [5] Cation mobility in modified Li1 + xTi2 − xGax(PO4)3 lithium titanium NASICON phosphates
    I. Yu. Pinus
    I. V. Arkhangel’skii
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1173 - 1176
  • [6] Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy
    Arbi, K.
    Rojo, J. M.
    Sanz, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) : 4215 - 4218
  • [7] Cation mobility in Li1 + xHf2 − xScx(PO4)3 NASICON-type phosphates
    Yu. O. Korepina
    L. Sh. Bigeeva
    A. B. Il’in
    A. I. Svitan’ko
    S. A. Novikova
    A. B. Yaroslavtsev
    Inorganic Materials, 2013, 49 : 283 - 287
  • [8] Cation mobility in Li1+xTi2-xCrx(PO4)3 NASICON-type phosphates
    Svitan'ko, A. I.
    Novikova, S. A.
    Safronov, D. V.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2011, 47 (12) : 1391 - 1395
  • [9] Cation mobility in Li1 + xTi2 − xCrx(PO4)3 NASICON-type phosphates
    A. I. Svitan’ko
    S. A. Novikova
    D. V. Safronov
    A. B. Yaroslavtsev
    Inorganic Materials, 2011, 47 : 1391 - 1395
  • [10] A microcontact impedance study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0 ≤ x ≤ 0.5) single crystals
    Rettenwander, D.
    Welzl, A.
    Pristat, S.
    Tietz, F.
    Taibl, S.
    Redhammer, G. J.
    Fleig, J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) : 1506 - 1513