Contributions of a finite element model for the geometric optimization of an implantable bioartificial pancreas

被引:12
|
作者
Dulong, JL [1 ]
Legallais, C [1 ]
机构
[1] Univ Technol Compiegne, Lab Biomec & Genie Biomed, CNRS, UMR 6600,Dept Biol Engn, F-60205 Compiegne, France
关键词
bioartificial pancreas; finite element method; hollow fiber; islet density; oxygen mass transfer;
D O I
10.1046/j.1525-1594.2002.07080.x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The extravascular implantation of islets of Langerhans immunoprotected within a permselective membrane is a promising method to treat diabetes mellitus. However, oxygen limitation due to purely diffusive solute transport was considered to provoke tissue necrosis and graft failure. We built a solute transport model based on a finite element method aiming at optimizing the hollow fiber geometry. With a low islet density, the influence of oxygen axial flux inside the fiber was underlined and a characteristic length for oxygen supply was introduced. This study allowed the conclusion that islet density must be adapted to the fiber diameter chosen for implantation.
引用
收藏
页码:583 / 589
页数:7
相关论文
共 50 条
  • [11] Geometric parameters for finite element model updating of joints and constraints
    Mottershead, JE
    Friswell, MI
    Ng, GHT
    Brandon, JA
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (02) : 171 - 182
  • [12] Mathematical and Computational Modeling of Poroelastic Cell Scaffolds Used in the Design of an Implantable Bioartificial Pancreas
    Wang, Yifan
    Canic, Suncica
    Bukac, Martina
    Blaha, Charles
    Roy, Shuvo
    FLUIDS, 2022, 7 (07)
  • [13] NUMERICAL INVESTIGATION OF A NOVEL SPIRAL WOUND MEMBRANE SANDWICH DESIGN FOR AN IMPLANTABLE BIOARTIFICIAL PANCREAS
    SARVER, JG
    FOURNIER, RL
    COMPUTERS IN BIOLOGY AND MEDICINE, 1990, 20 (02) : 105 - 119
  • [14] Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations
    A. A. Gusev
    G. Chuluunbaatar
    S. I. Vinitsky
    G. S. Pogosyan
    A. Deveikis
    P. O. Hess
    L. L. Hai
    Physics of Particles and Nuclei, 2023, 54 : 1011 - 1017
  • [15] Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations
    Gusev, A. A.
    Chuluunbaatar, G.
    Vinitsky, S. I.
    Pogosyan, G. S.
    Deveikis, A.
    Hess, P. O.
    Hai, L. L.
    PHYSICS OF PARTICLES AND NUCLEI, 2023, 54 (06) : 1011 - 1017
  • [16] Optimization of finite element model for electrical resistance tomography
    Xiao, Liqing
    Wang, Huaxiang
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2014, 47 (01): : 54 - 60
  • [17] Optimization of finite element model with novel topology in ERT
    Xiao, Liqing
    Wang, Huaxiang
    Shao, Xiaogen
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2014, 35 (06): : 1298 - 1305
  • [18] A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex
    Subbaroyan, Jeyakumar
    Martin, David C.
    Kipke, Daryl R.
    JOURNAL OF NEURAL ENGINEERING, 2005, 2 (04) : 103 - 113
  • [19] Finite element model for the analysis and optimization of pipe networks
    Mohtar, R.H.
    Bralts, V.F.
    Shayya, W.H.
    Transactions of the American Society of Agricultural Engineers, 1991, 34 (02): : 393 - 401
  • [20] Finite-element analysis for model parameters distributed on a hierarchy of geometric simplices
    Weiss, Chester J.
    GEOPHYSICS, 2017, 82 (04) : E155 - E167