The weak Galerkin finite element method for incompressible flow

被引:6
|
作者
Zhang, Tie [1 ]
Lin, Tao [2 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Liaoning, Peoples R China
[2] Virginia Tech Univ, Dept Math, Blacksburg, VA USA
关键词
Stable weak Galerkin method; Navier Stokes equation; Weak embedding inequality; Stability and error analysis; 2ND-ORDER ELLIPTIC PROBLEMS; STOKES EQUATIONS;
D O I
10.1016/j.jmaa.2018.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the weak Galerkin finite element method for stationary Navier-Stokes problem. We propose a weak finite element velocity-pressure space pair that satisfies the discrete inf-sup condition. This space pair is then employed to construct a stable weak Galerkin finite element scheme without adding any stabilizing term or penalty term. We prove a discrete embedding inequality on the weak finite element space which, together with the discrete inf-sup condition, enables us to establish the unique existence and stability estimates of the discrete velocity and pressure. Then, we derive the optimal error estimates for velocity and pressure approximations in the H-1-norm and L-2-norm, respectively. Numerical experiments are provided to illustrate the theoretical analysis. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 265
页数:19
相关论文
共 50 条
  • [41] A weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model
    Duan, Mengmen
    Yang, Yan
    Feng, Minfu
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 406 - 430
  • [42] A weak Galerkin finite element method based on H(div) virtual element for Darcy flow on polytopal meshes
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 398
  • [43] Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
    Lin, Guang
    Liu, Jiangguo
    Mu, Lin
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 422 - 437
  • [44] A Hermite finite element method for incompressible fluid flow
    Holdeman, J. T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (04) : 376 - 408
  • [45] A finite element variational multiscale method for incompressible flow
    Jiang, Yu
    Mei, Liquan
    Wei, Huiming
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 374 - 384
  • [46] Interior energy error estimates for the weak Galerkin finite element method
    Hengguang Li
    Lin Mu
    Xiu Ye
    Numerische Mathematik, 2018, 139 : 447 - 478
  • [47] The Modified Weak Galerkin Finite Element Method for Solving Brinkman Equations
    Li-na SUN
    Yue FENG
    Yuanyuan LIU
    Ran ZHANG
    Journal of Mathematical Research with Applications, 2019, 39 (06) : 657 - 676
  • [48] Weak Galerkin finite element method for linear elasticity interface problems
    Peng, Hui
    Wang, Ruishu
    Wang, Xiuli
    Zou, Yongkui
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 439
  • [49] A weak Galerkin finite element method for the Navier-Stokes equations
    Hu, Xiaozhe
    Mu, Lin
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 614 - 625
  • [50] A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR BRINKMAN EQUATIONS
    Dang, Haoning
    Peng, Hui
    Zhai, Qilong
    Zhang, Ran
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023,