We study the weak Galerkin finite element method for stationary Navier-Stokes problem. We propose a weak finite element velocity-pressure space pair that satisfies the discrete inf-sup condition. This space pair is then employed to construct a stable weak Galerkin finite element scheme without adding any stabilizing term or penalty term. We prove a discrete embedding inequality on the weak finite element space which, together with the discrete inf-sup condition, enables us to establish the unique existence and stability estimates of the discrete velocity and pressure. Then, we derive the optimal error estimates for velocity and pressure approximations in the H-1-norm and L-2-norm, respectively. Numerical experiments are provided to illustrate the theoretical analysis. (C) 2018 Elsevier Inc. All rights reserved.
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Gu, Shanshan
Chai, Shimin
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Chai, Shimin
Zhou, Chenguang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
Acad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Zhou, Chenguang
Zhou, Jinhui
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
机构:
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Nanjing Normal Univ, Taizhou Coll, Taizhou 225300, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Chunmei
Wang, Junping
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USAGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA