Blended barycentric coordinates

被引:12
|
作者
Anisimov, Dmitry [1 ]
Panozzo, Daniele [2 ]
Hormann, Kai [1 ]
机构
[1] Univ Svizzera Italiana, Lugano, Switzerland
[2] NYU, New York, NY USA
关键词
Barycentric coordinates; Mean value coordinates; Interpolation; CONSTRUCTION; POLYTOPES; POLYGONS;
D O I
10.1016/j.cagd.2017.02.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Generalized barycentric coordinates are widely used to represent a point inside a polygon as an affine combination of the polygon's vertices, and it is desirable to have coordinates that are non-negative, smooth, and locally supported. Unfortunately, the existing coordinate functions that satisfy all these properties do not have a simple analytic expression, making them expensive to evaluate and difficult to differentiate. In this paper, we present a new closed-form construction of generalized barycentric coordinates, which are non-negative, smooth, and locally supported. Our construction is based on the idea of blending mean value coordinates over the triangles of the constrained Delaunay triangulation of the input polygon, which needs to be computed in a preprocessing step. We experimentally show that our construction compares favourably with other generalized barycentric coordinates, both in terms of quality and computational cost. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 50 条
  • [1] Convergence of barycentric coordinates to barycentric kernels
    Kosinka, Jiri
    Barton, Michael
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 43 : 200 - 210
  • [2] PROBLEM IN BARYCENTRIC COORDINATES
    KLEE, V
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (06) : 1854 - &
  • [3] Barycentric coordinates computation in homogeneous coordinates
    Skala, Vaclav
    COMPUTERS & GRAPHICS-UK, 2008, 32 (01): : 120 - 127
  • [4] Variational Barycentric Coordinates
    Dodik, Ana
    Stein, Oded
    Sitzmann, Vincent
    Solomon, Justin
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [5] Barycentric Coordinates on Surfaces
    Rustamov, Raif M.
    COMPUTER GRAPHICS FORUM, 2010, 29 (05) : 1507 - 1516
  • [6] Local Barycentric Coordinates
    Zhang, Juyong
    Deng, Bailin
    Liu, Zishun
    Patane, Giuseppe
    Bouaziz, Sofien
    Hormann, Kai
    Liu, Ligang
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [7] Barycentric coordinates for polytopes
    Wachspress, Eugene L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) : 3319 - 3321
  • [8] Subdividing barycentric coordinates
    Anisimov, Dmitry
    Deng, Chongyang
    Hormann, Kai
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 43 : 172 - 185
  • [9] Surface normals and barycentric coordinates
    Mullineux, Glen
    Mathematical Problems in Engineering, 1996, 2 (06): : 487 - 497
  • [10] Generalized barycentric coordinates and applications
    Floater, Michael S.
    ACTA NUMERICA, 2015, 24 : 161 - 214