Blended barycentric coordinates

被引:12
|
作者
Anisimov, Dmitry [1 ]
Panozzo, Daniele [2 ]
Hormann, Kai [1 ]
机构
[1] Univ Svizzera Italiana, Lugano, Switzerland
[2] NYU, New York, NY USA
关键词
Barycentric coordinates; Mean value coordinates; Interpolation; CONSTRUCTION; POLYTOPES; POLYGONS;
D O I
10.1016/j.cagd.2017.02.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Generalized barycentric coordinates are widely used to represent a point inside a polygon as an affine combination of the polygon's vertices, and it is desirable to have coordinates that are non-negative, smooth, and locally supported. Unfortunately, the existing coordinate functions that satisfy all these properties do not have a simple analytic expression, making them expensive to evaluate and difficult to differentiate. In this paper, we present a new closed-form construction of generalized barycentric coordinates, which are non-negative, smooth, and locally supported. Our construction is based on the idea of blending mean value coordinates over the triangles of the constrained Delaunay triangulation of the input polygon, which needs to be computed in a preprocessing step. We experimentally show that our construction compares favourably with other generalized barycentric coordinates, both in terms of quality and computational cost. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 50 条
  • [21] The limit of a family of barycentric coordinates for quadrilaterals
    Deng, Chongyang
    Zhu, Fangyan
    Liu, Jianzhen
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 38 : 38 - 39
  • [22] Inertia tensor of a triangle in barycentric coordinates
    U-Rae Kim
    Dong-Won Jung
    Chaehyun Yu
    Wooyong Han
    Jungil Lee
    Journal of the Korean Physical Society, 2021, 79 : 589 - 599
  • [23] PROBLEMS WITH DEFINING BARYCENTRIC COORDINATES FOR THE SPHERE
    BROWN, JL
    WORSEY, AJ
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (01): : 37 - 49
  • [24] Interior Distance Using Barycentric Coordinates
    Rustamov, R. M.
    Lipman, Y.
    Funkhouser, T.
    COMPUTER GRAPHICS FORUM, 2009, 28 (05) : 1279 - 1288
  • [25] APPROXIMATION WITH BARYCENTRIC COORDINATES THE HILBERTIAN CASE
    ATTEIA, M
    MULTIVARIATE APPROXIMATION THEORY IV, 1989, 90 : 9 - 14
  • [26] INTERFERENCE DETECTION USING BARYCENTRIC COORDINATES
    PASSERELLO, CE
    MECHANICS RESEARCH COMMUNICATIONS, 1982, 9 (06) : 373 - 378
  • [27] The monotonicity of a family of barycentric coordinates for quadrilaterals
    Deng, Chongyang
    Shi, Feifan
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 51 : 1 - 3
  • [28] Anisotropic Generalized Barycentric Coordinates and Applications
    Guan T.
    Han L.
    Cao J.
    Chen Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (03): : 341 - 353
  • [29] Inertia tensor of a triangle in barycentric coordinates
    Kim, U-Rae
    Jung, Dong-Won
    Yu, Chaehyun
    Han, Wooyong
    Lee, Jungil
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (07) : 589 - 599
  • [30] An area problem using barycentric coordinates
    Volenec, Vladimir
    MATHEMATICAL GAZETTE, 2022, 106 (567): : 541 - 543