Variational Barycentric Coordinates

被引:6
|
作者
Dodik, Ana [1 ]
Stein, Oded [1 ,2 ]
Sitzmann, Vincent [1 ]
Solomon, Justin [1 ]
机构
[1] MIT, CSAIL, Cambridge, MA 02139 USA
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
美国国家科学基金会;
关键词
barycentric coordinates; neural fields; geometry processing; deformation; inverse problem; partial differential equations; geometric variational problem;
D O I
10.1145/3618403
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, in practice limiting the choice of objective function. In contrast, we directly parameterize the continuous function that maps any coordinate in a polytope's interior to its barycentric coordinates using a neural field. This formulation is enabled by our theoretical characterization of barycentric coordinates, which allows us to construct neural fields that parameterize the entire function class of valid coordinates. We demonstrate the flexibility of our model using a variety of objective functions, including multiple smoothness and deformation-aware energies; as a side contribution, we also present mathematically-justified means of measuring and minimizing objectives like total variation on discontinuous neural fields. We offer a practical acceleration strategy, present a thorough validation of our algorithm, and demonstrate several applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Convergence of barycentric coordinates to barycentric kernels
    Kosinka, Jiri
    Barton, Michael
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 43 : 200 - 210
  • [2] PROBLEM IN BARYCENTRIC COORDINATES
    KLEE, V
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (06) : 1854 - &
  • [3] Barycentric coordinates computation in homogeneous coordinates
    Skala, Vaclav
    COMPUTERS & GRAPHICS-UK, 2008, 32 (01): : 120 - 127
  • [4] Barycentric Coordinates on Surfaces
    Rustamov, Raif M.
    COMPUTER GRAPHICS FORUM, 2010, 29 (05) : 1507 - 1516
  • [5] Local Barycentric Coordinates
    Zhang, Juyong
    Deng, Bailin
    Liu, Zishun
    Patane, Giuseppe
    Bouaziz, Sofien
    Hormann, Kai
    Liu, Ligang
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [6] Blended barycentric coordinates
    Anisimov, Dmitry
    Panozzo, Daniele
    Hormann, Kai
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 52-53 : 205 - 216
  • [7] Barycentric coordinates for polytopes
    Wachspress, Eugene L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) : 3319 - 3321
  • [8] Subdividing barycentric coordinates
    Anisimov, Dmitry
    Deng, Chongyang
    Hormann, Kai
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 43 : 172 - 185
  • [9] Surface normals and barycentric coordinates
    Mullineux, Glen
    Mathematical Problems in Engineering, 1996, 2 (06): : 487 - 497
  • [10] Generalized barycentric coordinates and applications
    Floater, Michael S.
    ACTA NUMERICA, 2015, 24 : 161 - 214