Variational Barycentric Coordinates

被引:6
|
作者
Dodik, Ana [1 ]
Stein, Oded [1 ,2 ]
Sitzmann, Vincent [1 ]
Solomon, Justin [1 ]
机构
[1] MIT, CSAIL, Cambridge, MA 02139 USA
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
美国国家科学基金会;
关键词
barycentric coordinates; neural fields; geometry processing; deformation; inverse problem; partial differential equations; geometric variational problem;
D O I
10.1145/3618403
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, in practice limiting the choice of objective function. In contrast, we directly parameterize the continuous function that maps any coordinate in a polytope's interior to its barycentric coordinates using a neural field. This formulation is enabled by our theoretical characterization of barycentric coordinates, which allows us to construct neural fields that parameterize the entire function class of valid coordinates. We demonstrate the flexibility of our model using a variety of objective functions, including multiple smoothness and deformation-aware energies; as a side contribution, we also present mathematically-justified means of measuring and minimizing objectives like total variation on discontinuous neural fields. We offer a practical acceleration strategy, present a thorough validation of our algorithm, and demonstrate several applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] RAY EQUATIONS IN BARYCENTRIC COORDINATES
    MALTSEV, NE
    SOVIET PHYSICS ACOUSTICS-USSR, 1983, 29 (05): : 390 - 392
  • [12] Barycentric coordinates for convex sets
    Warren, Joe
    Schaefer, Scott
    Hirani, Anil N.
    Desbrun, Mathieu
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (03) : 319 - 338
  • [13] Barycentric coordinates for convex sets
    Joe Warren
    Scott Schaefer
    Anil N. Hirani
    Mathieu Desbrun
    Advances in Computational Mathematics, 2007, 27 : 319 - 338
  • [14] Hyperbolic barycentric coordinates and applications
    Bensad, Alaa Eddine
    Ikemakhen, Aziz
    COMPUTER AIDED GEOMETRIC DESIGN, 2022, 95
  • [15] Higher order barycentric coordinates
    Langer, Torsten
    Seidel, Hans-Peter
    COMPUTER GRAPHICS FORUM, 2008, 27 (02) : 459 - 466
  • [16] Stochastic Computation of Barycentric Coordinates
    de Goes, Fernando
    Desbrun, Mathieu
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):
  • [17] Barycentric coordinates for convex polytopes
    Warren, J
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) : 97 - 108
  • [18] Surface normals and barycentric coordinates
    Mullineux, G
    MATHEMATICAL PROBLEMS IN ENGINEERING, 1996, 2 (06) : 487 - 497
  • [19] Special issue on "Generalized Barycentric Coordinates"
    Floater, Michael S.
    Hormann, Kai
    Sukumar, N.
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 77
  • [20] On pseudo-harmonic barycentric coordinates
    Chen, Renjie
    Gotsman, Craig
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 44 : 15 - 35