Simulation-optimization via Kriging and bootstrapping: a survey

被引:34
|
作者
Kleijnen, Jack P. C. [1 ]
机构
[1] Tilburg Univ, NL-5000 LE Tilburg, Netherlands
关键词
simulation; optimization; stochastic process; non-linear programming; risk; EFFICIENT GLOBAL OPTIMIZATION; EXPECTED IMPROVEMENT; COMPUTER EXPERIMENTS; ROBUST OPTIMIZATION; MODELS; METAMODELS; TAGUCHI; DESIGN;
D O I
10.1057/jos.2014.4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article surveys optimization of simulated systems. The simulation may be either deterministic or random. The survey reflects the author's extensive experience with simulation-optimization through Kriging (or Gaussian process) metamodels, analysed through parametric bootstrapping for deterministic and random simulation and distribution-free bootstrapping (or resampling) for random simulation. The survey covers: (1) simulation-optimization through 'efficient global optimization' using 'expected improvement' (EI); this EI uses the Kriging predictor variance, which can be estimated through bootstrapping accounting for the estimation of the Kriging parameters; (2) optimization with constraints for multiple random simulation outputs and deterministic inputs through mathematical programming applied to Kriging metamodels validated through bootstrapping; (3) Taguchian robust optimization for uncertain environments, using mathematical programming-applied to Kriging metamodels-and bootstrapping to estimate the variability of the Kriging metamodels and the resulting robust solution; (4) bootstrapping for improving convexity or preserving monotonicity of the Kriging metamodel.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条
  • [1] PARAMETRIC AND DISTRIBUTION-FREE BOOTSTRAPPING IN ROBUST SIMULATION-OPTIMIZATION
    Dellino, Gabriella
    Kleijnen, Jack P. C.
    Meloni, Carlo
    [J]. PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 1283 - 1294
  • [2] KRIGING-BASED SIMULATION-OPTIMIZATION: A STOCHASTIC RECURSION PERSPECTIVE
    Pedrielli, Giulia
    Ng, Szu Hui
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 3834 - 3845
  • [3] Classic Kriging versus Kriging with bootstrapping or conditional simulation: classic Kriging's robust confidence intervals and optimization
    Mehdad, Ehsan
    Kleijnen, Jack P. C.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (11) : 1804 - 1814
  • [4] Comparison of Neural Network and Kriging Method for Creating Simulation-Optimization Metamodels
    Ren Yuan
    Bai Guangchen
    [J]. EIGHTH IEEE INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, PROCEEDINGS, 2009, : 815 - 821
  • [5] Multi-objective simulation-optimization via kriging surrogate models applied to natural gas liquefaction process design
    Santos, Lucas F.
    Costa, Caliane B. B.
    Caballero, Jose A.
    Ravagnani, Mauro A. S. S.
    [J]. ENERGY, 2023, 262
  • [6] A Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sources
    Zhao, Ying
    Lu, Wenxi
    Xiao, Chuanning
    [J]. JOURNAL OF CONTAMINANT HYDROLOGY, 2016, 185 : 51 - 60
  • [7] Automatic generation of efficient policy alternatives via simulation-optimization
    Yeomans, JS
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2002, 53 (11) : 1256 - 1267
  • [8] A GENERATIVE SIMULATION-OPTIMIZATION SYSTEM
    BENGU, G
    HADDOCK, J
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 1986, 10 (04) : 301 - 313
  • [9] A testbed of simulation-optimization problems
    Pasupathy, Raghu
    Henderson, Shane G.
    [J]. PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 255 - 263
  • [10] INTEGRATED SIMULATION-OPTIMIZATION SYSTEM
    EVTUSHENKO, Y
    [J]. SIMULATION, 1980, 35 (05) : 177 - 177