Simulation-optimization via Kriging and bootstrapping: a survey

被引:34
|
作者
Kleijnen, Jack P. C. [1 ]
机构
[1] Tilburg Univ, NL-5000 LE Tilburg, Netherlands
关键词
simulation; optimization; stochastic process; non-linear programming; risk; EFFICIENT GLOBAL OPTIMIZATION; EXPECTED IMPROVEMENT; COMPUTER EXPERIMENTS; ROBUST OPTIMIZATION; MODELS; METAMODELS; TAGUCHI; DESIGN;
D O I
10.1057/jos.2014.4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article surveys optimization of simulated systems. The simulation may be either deterministic or random. The survey reflects the author's extensive experience with simulation-optimization through Kriging (or Gaussian process) metamodels, analysed through parametric bootstrapping for deterministic and random simulation and distribution-free bootstrapping (or resampling) for random simulation. The survey covers: (1) simulation-optimization through 'efficient global optimization' using 'expected improvement' (EI); this EI uses the Kriging predictor variance, which can be estimated through bootstrapping accounting for the estimation of the Kriging parameters; (2) optimization with constraints for multiple random simulation outputs and deterministic inputs through mathematical programming applied to Kriging metamodels validated through bootstrapping; (3) Taguchian robust optimization for uncertain environments, using mathematical programming-applied to Kriging metamodels-and bootstrapping to estimate the variability of the Kriging metamodels and the resulting robust solution; (4) bootstrapping for improving convexity or preserving monotonicity of the Kriging metamodel.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条
  • [31] Simulation-Optimization Models for the Remediation of Groundwater Contamination
    Boddula, Swathi
    Eldho, T. I.
    [J]. GEO-CHICAGO 2016: SUSTAINABLE WASTE MANAGEMENT AND REMEDIATION, 2016, (273): : 381 - 391
  • [32] Simulation-optimization of complex systems: Methods and applications
    Dellino, Gabriella
    Meloni, Carlo
    Pierreval, Henri
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2014, 46 : 1 - 3
  • [33] Hybrid simulation-optimization methods: A taxonomy and discussion
    Figueira, Goncalo
    Almada-Lobo, Bernardo
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2014, 46 : 118 - 134
  • [34] Preventive maintenance scheduling: a simulation-optimization approach
    Darmawan, Agus
    Sheu, D. Daniel
    [J]. PRODUCTION AND MANUFACTURING RESEARCH-AN OPEN ACCESS JOURNAL, 2021, 9 (01): : 281 - 298
  • [35] Hybrid Simulation-Optimization Algorithms for Distillation Design
    Caballero, Jose A.
    Grossmann, Ignacio E.
    [J]. 20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 637 - 642
  • [36] Flood Management with SUDS: A Simulation-Optimization Framework
    Ferrans, Pascual
    Reyes-Silva, Julian David
    Krebs, Peter
    Temprano, Javier
    [J]. WATER, 2023, 15 (03)
  • [37] SIMULATION-OPTIMIZATION USING A REINFORCEMENT LEARNING APPROACH
    Paternina-Arboleda, Carlos D.
    Montoya-Torres, Jairo R.
    Fabregas-Ariza, Aldo
    [J]. 2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 1376 - +
  • [38] Simulation-Optimization Tool for Multiattribute Reservoir Systems
    Seifollahi-Aghmiuni, Samaneh
    Bozorg-Haddad, Omid
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2019, 24 (09)
  • [39] A SIMULATION-OPTIMIZATION PLATFORM TO IMPROVE DISTRIBUTION NETWORKS
    Belanger, Valerie
    Ruiz, Angel
    Kadi, Daoud Ait
    [J]. INTERNATIONAL MEDITERRANEAN MODELLING MULTICONFERENCE 2006, 2006, : 487 - 491
  • [40] Accuracy of neural network approximators in simulation-optimization
    Johnson, VM
    Rogers, LL
    [J]. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2000, 126 (02): : 48 - 56