Classic Kriging versus Kriging with bootstrapping or conditional simulation: classic Kriging's robust confidence intervals and optimization

被引:19
|
作者
Mehdad, Ehsan [1 ]
Kleijnen, Jack P. C. [1 ]
机构
[1] Tilburg Univ, NL-5000 LE Tilburg, Netherlands
关键词
simulation; optimization; Kriging; bootstrap; conditional simulation; EFFICIENT GLOBAL OPTIMIZATION;
D O I
10.1057/jors.2014.126
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Kriging is a popular method for estimating the global optimum of a simulated system. Kriging approximates the input/output function of the simulation model. Kriging also estimates the variances of the predictions of outputs for input combinations not yet simulated. These predictions and their variances are used by 'efficient global optimization' (EGO), to balance local and global search. This article focuses on two related questions: (1) How to select the next combination to be simulated when searching for the global optimum? (2) How to derive confidence intervals for outputs of input combinations not yet simulated? Classic Kriging simply plugs the estimated Kriging parameters into the formula for the predictor variance, so theoretically this variance is biased. This article concludes that practitioners may ignore this bias, because classic Kriging gives acceptable confidence intervals and estimates of the optimal input combination. This conclusion is based on bootstrapping and conditional simulation.
引用
收藏
页码:1804 / 1814
页数:11
相关论文
共 50 条
  • [1] Simulation-optimization via Kriging and bootstrapping: a survey
    Kleijnen, Jack P. C.
    [J]. JOURNAL OF SIMULATION, 2014, 8 (04) : 241 - 250
  • [2] Simulation optimization using stochastic kriging with robust statistics
    Ouyang, Linhan
    Han, Mei
    Ma, Yizhong
    Wang, Min
    Park, Chanseok
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (03) : 623 - 636
  • [3] KRIGING AND CONDITIONAL SIMULATION OF GAUSSIAN FIELD
    HOSHIYA, M
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1995, 121 (02): : 181 - 186
  • [4] Conditional Bias in Kriging: Let's Keep It
    Nowak, M.
    Leuangthong, O.
    [J]. GEOSTATISTICS VALENCIA 2016, 2017, 19 : 303 - 318
  • [5] Robust optimization based on Kriging surrogate model
    Gao, Yuehua
    Wang, Xicheng
    [J]. Huagong Xuebao/CIESC Journal, 2010, 61 (03): : 676 - 681
  • [6] Equivalence between kriging and CPDF methods for conditional simulation
    Shinozuka, M
    Zhang, RC
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1996, 122 (06): : 530 - 538
  • [7] Conditional optimization of a noisy function using a kriging metamodel
    Sambakhe, Diarietou
    Rouan, Lauriane
    Bacro, Jean-Noel
    Goze, Eric
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (03) : 615 - 636
  • [8] Conditional optimization of a noisy function using a kriging metamodel
    Diariétou Sambakhé
    Lauriane Rouan
    Jean-Noël Bacro
    Eric Gozé
    [J]. Journal of Global Optimization, 2019, 73 : 615 - 636
  • [9] Multiobjective Simulation Optimization Using Stochastic Kriging
    Zhang, Jian-xia
    Ma, Yi-zhong
    Zhu, Lian-yan
    [J]. PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT: CORE THEORY AND APPLICATIONS OF INDUSTRIAL ENGINEERING (VOL 1), 2016, : 81 - 91
  • [10] Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping
    van Beers, Wim C. M.
    Kleijnen, Jack P. C.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 186 (03) : 1099 - 1113