Discovery of Semantic Relationships in PolSAR Images Using Latent Dirichlet Allocation

被引:11
|
作者
Tanase, Radu [1 ,2 ]
Bahmanyar, Reza [3 ]
Schwarz, Gottfried [3 ]
Datcu, Mihai [1 ,3 ]
机构
[1] Univ Politehn Bucuresti, CEOSpaceTech, Res Ctr Spatial Informat, Bucharest 060042, Romania
[2] Mil Tech Acad, Bucharest 050141, Romania
[3] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Wessling, Germany
关键词
Bag-of-topics (BoT); bag-of-words (BoW); Entropy/Anisotropy/Alpha-Wishart classification; latent Dirichlet allocation (LDA); polarimetric synthetic aperture radar (PolSAR); semantic relationships; DECOMPOSITION;
D O I
10.1109/LGRS.2016.2636663
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a multilevel semantics discovery approach for bridging the semantic gap when mining high-resolution polarimetric synthetic aperture radar (PolSAR) remote sensing images. First, an Entropy/Anisotropy/Alpha-Wishart classifier is employed to discover low-level semantics as classes representing the physical scattering properties of targets (e.g., low-entropy/surface scattering/high anisotropy). Then, the images are tiled into patches and each patch is modeled as a bag-of-words, a histogram of the class labels. Next, latent Dirichlet allocation is applied to discover their higher level semantics as a set of topics. Our results demonstrate that topic semantics are close to human semantics used for basic land-cover types (e.g., grassland). Therefore, using the topic description (bag-of-topics) of PolSAR images leads to a narrower semantic gap in image mining. In addition, a visual exploration of the topic descriptions helps to find semantic relationships, which can be used for defining new semantic categories (e.g., mixed land-cover types) and designing rule-based categorization schemes.
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [41] Using Latent Dirichlet Allocation for Topic Modelling in Twitter
    Ostrowski, David Alfred
    2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 493 - 497
  • [42] Sequential latent Dirichlet allocation
    Du, Lan
    Buntine, Wray
    Jin, Huidong
    Chen, Changyou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (03) : 475 - 503
  • [43] Collective Latent Dirichlet Allocation
    Shen, Zhi-Yong
    Sun, Jun
    Shen, Yi-Dong
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 1019 - 1024
  • [44] The Security of Latent Dirichlet Allocation
    Mei, Shike
    Zhu, Xiaojin
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 681 - 689
  • [45] Sequential latent Dirichlet allocation
    Lan Du
    Wray Buntine
    Huidong Jin
    Changyou Chen
    Knowledge and Information Systems, 2012, 31 : 475 - 503
  • [46] A MRF-based clustering algorithm for remote sensing images by using the latent Dirichlet allocation model
    Tang, Hong
    Shen, Li
    Yang, Xin
    Qi, Yinfeng
    Jiang, Weiguo
    Gong, Adu
    SECOND INTERNATIONAL CONFERENCE ON MINING ENGINEERING AND METALLURGICAL TECHNOLOGY (MEMT 2011), 2011, 2 : 358 - 363
  • [47] AN OBJECT-ORIENTED CLUSTERING ALGORITHM FOR VHR PANCHROMATIC IMAGES USING NONPARAMETRIC LATENT DIRICHLET ALLOCATION
    Qi, Yinfeng
    Tang, Hong
    Shu, Yang
    Shen, Li
    Yue, Jianwei
    Jiang, Weiguo
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2328 - 2331
  • [48] Unsupervised segmentation of greenhouse plant images based on modified Latent Dirichlet Allocation
    Wang, Yi
    Xu, Lihong
    PEERJ, 2018, 6
  • [49] Web information mining and semantic analysis in heterogeneous unstructured text data using enhanced latent Dirichlet allocation
    Venugopal, Madamanchi
    Sharma, Virendra K.
    Sharma, Kalpana
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (01):
  • [50] Land Cover Classification of PolSAR Images Using Semantic Segmentation Networks
    Turkmenli, Ilter
    Aptoula, Erchan
    Kayabol, Koray
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,