Discovery of Semantic Relationships in PolSAR Images Using Latent Dirichlet Allocation

被引:11
|
作者
Tanase, Radu [1 ,2 ]
Bahmanyar, Reza [3 ]
Schwarz, Gottfried [3 ]
Datcu, Mihai [1 ,3 ]
机构
[1] Univ Politehn Bucuresti, CEOSpaceTech, Res Ctr Spatial Informat, Bucharest 060042, Romania
[2] Mil Tech Acad, Bucharest 050141, Romania
[3] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Wessling, Germany
关键词
Bag-of-topics (BoT); bag-of-words (BoW); Entropy/Anisotropy/Alpha-Wishart classification; latent Dirichlet allocation (LDA); polarimetric synthetic aperture radar (PolSAR); semantic relationships; DECOMPOSITION;
D O I
10.1109/LGRS.2016.2636663
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a multilevel semantics discovery approach for bridging the semantic gap when mining high-resolution polarimetric synthetic aperture radar (PolSAR) remote sensing images. First, an Entropy/Anisotropy/Alpha-Wishart classifier is employed to discover low-level semantics as classes representing the physical scattering properties of targets (e.g., low-entropy/surface scattering/high anisotropy). Then, the images are tiled into patches and each patch is modeled as a bag-of-words, a histogram of the class labels. Next, latent Dirichlet allocation is applied to discover their higher level semantics as a set of topics. Our results demonstrate that topic semantics are close to human semantics used for basic land-cover types (e.g., grassland). Therefore, using the topic description (bag-of-topics) of PolSAR images leads to a narrower semantic gap in image mining. In addition, a visual exploration of the topic descriptions helps to find semantic relationships, which can be used for defining new semantic categories (e.g., mixed land-cover types) and designing rule-based categorization schemes.
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [31] Using Latent Dirichlet Allocation for Automatic Categorization of Software
    Tian, Kai
    Revelle, Meghan
    Poshyvanyk, Denys
    2009 6TH IEEE INTERNATIONAL WORKING CONFERENCE ON MINING SOFTWARE REPOSITORIES, 2009, : 163 - 166
  • [32] A Review of Cyberattack Research using Latent Dirichlet Allocation
    Xiao, Ming
    Dhillon, Gurpreet
    Smith, Kane J.
    28th Americas Conference on Information Systems, AMCIS 2022, 2022,
  • [33] Topic Modeling Using Latent Dirichlet allocation: A Survey
    Chauhan, Uttam
    Shah, Apurva
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [35] Evaluation of Latent Dirichlet Allocation for Document Organization in Different Levels of Semantic Complexity
    Sinoara, Roberta A.
    Scheicher, Ricardo B.
    Rezende, Solange O.
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [36] Discover the Semantic Structure of Human Reference Epigenome by Differential Latent Dirichlet Allocation
    Zheng, Yiyu
    Li, Xiaoman
    Hu, Haiyan
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 270 - 275
  • [37] Unsupervised Language Filtering using the Latent Dirichlet Allocation
    Zhang, Wei
    Clark, Robert A. J.
    Wang, Yongyuan
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 1268 - 1272
  • [38] Predicting Component Failures Using Latent Dirichlet Allocation
    Liu, Hailin
    Xu, Ling
    Yang, Mengning
    Yan, Meng
    Zhang, Xiaohong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [39] Land cover harmonization using Latent Dirichlet Allocation
    Li, Zhan
    White, Joanne C.
    Wulder, Michael A.
    Hermosilla, Txomin
    Davidson, Andrew M.
    Comber, Alexis J.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2021, 35 (02) : 348 - 374
  • [40] Effectiveness of Latent Dirichlet Allocation Model for Semantic Information Retrieval on Malay Document
    Zulkefli, Nurul Syeilla Syazhween Binti
    Rahman, Nurazzah Binti Abdul
    Puteh, Mazidah Binti
    Abu Bakar, Zainab Binti
    2018 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION RETRIEVAL AND KNOWLEDGE MANAGEMENT (CAMP), 2018, : 101 - 106