Discovery of Semantic Relationships in PolSAR Images Using Latent Dirichlet Allocation

被引:11
|
作者
Tanase, Radu [1 ,2 ]
Bahmanyar, Reza [3 ]
Schwarz, Gottfried [3 ]
Datcu, Mihai [1 ,3 ]
机构
[1] Univ Politehn Bucuresti, CEOSpaceTech, Res Ctr Spatial Informat, Bucharest 060042, Romania
[2] Mil Tech Acad, Bucharest 050141, Romania
[3] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Wessling, Germany
关键词
Bag-of-topics (BoT); bag-of-words (BoW); Entropy/Anisotropy/Alpha-Wishart classification; latent Dirichlet allocation (LDA); polarimetric synthetic aperture radar (PolSAR); semantic relationships; DECOMPOSITION;
D O I
10.1109/LGRS.2016.2636663
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a multilevel semantics discovery approach for bridging the semantic gap when mining high-resolution polarimetric synthetic aperture radar (PolSAR) remote sensing images. First, an Entropy/Anisotropy/Alpha-Wishart classifier is employed to discover low-level semantics as classes representing the physical scattering properties of targets (e.g., low-entropy/surface scattering/high anisotropy). Then, the images are tiled into patches and each patch is modeled as a bag-of-words, a histogram of the class labels. Next, latent Dirichlet allocation is applied to discover their higher level semantics as a set of topics. Our results demonstrate that topic semantics are close to human semantics used for basic land-cover types (e.g., grassland). Therefore, using the topic description (bag-of-topics) of PolSAR images leads to a narrower semantic gap in image mining. In addition, a visual exploration of the topic descriptions helps to find semantic relationships, which can be used for defining new semantic categories (e.g., mixed land-cover types) and designing rule-based categorization schemes.
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [1] Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation
    Lienou, Marie
    Maitre, Henri
    Datcu, Mihai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 28 - 32
  • [2] Video fingerprinting using Latent Dirichlet Allocation and facial images
    Vretos, Nicholas
    Nikolaidis, Nikos
    Pitas, Ioannis
    PATTERN RECOGNITION, 2012, 45 (07) : 2489 - 2498
  • [3] Topic Modeling Twitter Data Using Latent Dirichlet Allocation and Latent Semantic Analysis
    Qomariyah, Siti
    Iriawan, Nur
    Fithriasari, Kartika
    2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION, 2019, 2019, 2194
  • [4] Reducing explicit semantic representation vectors using Latent Dirichlet Allocation
    Saif, Abdulgabbar
    Ab Aziz, Mohd Juzaiddin
    Omar, Nazlia
    KNOWLEDGE-BASED SYSTEMS, 2016, 100 : 145 - 159
  • [5] Clustered Latent Dirichlet Allocation for Scientific Discovery
    Gropp, Christopher
    Herzog, Alexander
    Safro, Ilya
    Wilson, Paul W.
    Apon, Amy W.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4503 - 4511
  • [6] Evaluation of text semantic features using latent dirichlet allocation model
    Zhou C.
    Li N.
    Zhang C.
    Yang X.
    International Journal of Performability Engineering, 2020, 16 (06) : 968 - 978
  • [7] Inference Algorithms in Latent Dirichlet Allocation for Semantic Classification
    Zubir, Wan Mohammad Aflah Mohammad
    Aziz, Izzatdin Abdul
    Jaafar, Jafreezal
    Hasan, Mohd Hilmi
    APPLIED COMPUTATIONAL INTELLIGENCE AND MATHEMATICAL METHODS: COMPUTATIONAL METHODS IN SYSTEMS AND SOFTWARE 2017, VOL. 2, 2018, 662 : 173 - 184
  • [8] Semantic latent dirichlet allocation for automatic topic extraction
    Bhutada, Sunil
    Balaram, V. V. S. S. S.
    Bulusu, Vishnu Vardhan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (03): : 449 - 469
  • [9] A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement
    Wheeler, Jordan M.
    Cohen, Allan S.
    Wang, Shiyu
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2024, 49 (05) : 848 - 874
  • [10] Accuracy of Unit Under Test Identification Using Latent Semantic Analysis and Latent Dirichlet Allocation
    Madeja, Matej
    Poruban, Jaroslav
    2019 IEEE 15TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATICS (INFORMATICS 2019), 2019, : 161 - 166