A projective log variety (X, D) is called a log Fano manifold if X is smooth and if D is a reduced simple normal crossing divisor on X with -(K-X + D) ample The n-dimensional log Fano manifolds (X, D) with nonzero D are classified in this article when the log Fano index r of (X, D) satisfies either r >= n/2 with rho(X) >= 2 or r >= n - 2. This result is a partial generalization of the classification of logarithmic Fano 3-folds by Maeda.
机构:
Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USAPrinceton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
Esser, Louis
Ji, Lena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, 273 Altgeld Hall,1409 W Green St, Champaign, IL 61801 USAPrinceton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
Ji, Lena
Moraga, Joaquin
论文数: 0引用数: 0
h-index: 0
机构:
UCLA Math Dept, Box 951555, Los Angeles, CA 90095 USAPrinceton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
Moraga, Joaquin
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2025,
2025
(819):
: 89
-
133