SIMPLE NORMAL CROSSING FANO VARIETIES AND LOG FANO MANIFOLDS

被引:6
|
作者
Fujita, Kento [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
CLASSIFICATION; CONTRACTIONS; 3-FOLDS;
D O I
10.1215/00277630-2430136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A projective log variety (X, D) is called a log Fano manifold if X is smooth and if D is a reduced simple normal crossing divisor on X with -(K-X + D) ample The n-dimensional log Fano manifolds (X, D) with nonzero D are classified in this article when the log Fano index r of (X, D) satisfies either r >= n/2 with rho(X) >= 2 or r >= n - 2. This result is a partial generalization of the classification of logarithmic Fano 3-folds by Maeda.
引用
收藏
页码:95 / 123
页数:29
相关论文
共 50 条
  • [21] Fano varieties with conjecturally largest Fano index
    Wang, Chengxi
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (12)
  • [22] Weakly special test configurations of log canonical Fano varieties
    Chen, Guodu
    Zhou, Chuyu
    ALGEBRA & NUMBER THEORY, 2022, 16 (10) : 2415 - 2432
  • [23] Fano Varieties of K3-Type and IHS Manifolds
    Fatighenti, Enrico
    Mongardi, Giovanni
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (04) : 3097 - 3142
  • [24] Deformations of Calabi-Yau manifolds in Fano toric varieties
    Bini, Gilberto
    Iacono, Donatella
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1399 - 1412
  • [25] Deformations of Calabi-Yau manifolds in Fano toric varieties
    Gilberto Bini
    Donatella Iacono
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1399 - 1412
  • [26] TORIC FANO VARIETIES ASSOCIATED TO FINITE SIMPLE GRAPHS
    Suyama, Yusuke
    TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (01) : 137 - 144
  • [27] On deformations of Fano manifolds
    Huai-Dong Cao
    Xiaofeng Sun
    Shing-Tung Yau
    Yingying Zhang
    Mathematische Annalen, 2022, 383 : 809 - 836
  • [28] On deformations of Fano manifolds
    Cao, Huai-Dong
    Sun, Xiaofeng
    Yau, Shing-Tung
    Zhang, Yingying
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 809 - 836
  • [29] HIGHER FANO MANIFOLDS
    Araujo, Carolina
    Beheshti, Roya
    Castravet, Ana-maria
    Jabbusch, Kelly
    Makarova, Svetlana
    Mazzon, Enrica
    Taylor, Libby
    Viswanathan, Nivedita
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 103 - 125
  • [30] Fano varieties in index one Fano complete intersections
    Damiano Testa
    Mathematische Zeitschrift, 2008, 259 : 61 - 64