Hedysarum polysaccharide alleviates oxidative stress to protect against diabetic peripheral neuropathy via modulation of the keap1/Nrf2 signaling pathway

被引:9
|
作者
He, Liu [1 ,3 ]
Huan, Pengfei [2 ,3 ]
Xu, Jing [1 ]
Chen, Yanxu [3 ]
Zhang, Lei [3 ]
Wang, Jun [3 ]
Wang, Li [1 ,2 ,4 ]
Jin, Zhisheng [3 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Affiliated Hosp 2, Guiyang 550005, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Sch Basic Med, Dept Diagnost Tradit Chinese Med, Shanghai 201203, Peoples R China
[3] Gansu Univ Chinese Med, Lanzhou 730000, Peoples R China
[4] Shanghai Univ Tradit Chinese Med, Shanghai Municipal Hosp Tradit Chinese Med, Expt Ctr, Shanghai 200071, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxidative stress; Hedysarum polysaccharide; Diabetic peripheral neuropathy; Keap1; Nrf2; pathway; NF-KAPPA-B; AUTOPHAGY; MODEL;
D O I
10.1016/j.jchemneu.2022.102182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diabetic peripheral neuropathy (DPN) is a chronic complication of diabetes mellitus. Oxidative stress is implicated in DPN progression, suggesting that antioxidant therapy could be a viable anti-DPN method. Hedysarum polysaccharide (HPS) is an active component of Radix Hedysari, a plant that has been widely used as food and a herb for treating multiple diseases. Here, we evaluated the mechanisms of action of anti-DPN effects of HPS in genetically obese (ob/ob) mice. Schwann cells (SCs) were exposed to glucose (100 mM) in vitro and then treated with HPS at concentrations of 30, 60, 120, and 240 mg/L. Notably, HPS significantly inhibited high glucosemediated cytotoxicity and oxidative stress by reducing malondialdehyde (MDA) levels and upregulating the expression of antioxidant enzymes (gamma-glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione reductase (GR)) in SCs. Moreover, HPS increased the expression of nerve growth factor, stimulated Nrf2 signaling, and decreased Keap1 expression levels. Analysis of DPN mice models gavaged with HPS at 50, 100, and 200 mg/kg/d or lipoic acid (LA) at 30 mg/kg/d (positive control) for 8 weeks revealed that HPS markedly increased motor nerve conduction velocity (MNCV), shortened thermal withdrawal latency (TWL), and inhibited oxidative stress in serum and sciatic nerves of DPN mice models. Mechanistically, HPS suppressed Keap1 signaling and enhanced Nrf2 signaling in sciatic nerves. These findings imply that HPS ameliorates DPN via antioxidant mechanisms and by activating Keap1/Nrf2 signaling, suggesting that HPS is a potential treatment option for DPN.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Anti-inflammatory effect of walnut-derived peptide via the activation of Nrf2/Keap1 pathway against oxidative stress
    Qi, Yuan
    Wu, Dan
    Fang, Li
    Leng, Yue
    Wang, Xiyan
    Liu, Chunlei
    Liu, Xiaoting
    Wang, Ji
    Min, Weihong
    JOURNAL OF FUNCTIONAL FOODS, 2023, 110
  • [42] The Keap1/Nrf2 Signaling Pathway in the Thyroid-2020 Update
    Thanas, Christina
    Ziros, Panos G.
    Chartoumpekis, Dionysios V.
    Renaud, Cedric O.
    Sykiotis, Gerasimos P.
    ANTIOXIDANTS, 2020, 9 (11) : 1 - 14
  • [43] Cellular Modulators of the NRF2/KEAP1 Signaling Pathway in Prostate Cancer
    Tossetta, Giovanni
    Fantone, Sonia
    Marzioni, Daniela
    Mazzucchelli, Roberta
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (07):
  • [44] Phloretin Prevents Diabetic Cardiomyopathy by Dissociating Keap1/Nrf2 Complex and Inhibiting Oxidative Stress
    Ying, Yin
    Jin, Jiye
    Ye, Li
    Sun, Pingping
    Wang, Hui
    Wang, Xiaodong
    FRONTIERS IN ENDOCRINOLOGY, 2018, 9
  • [45] The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus
    David, Joshua A.
    Rifkin, William J.
    Rabbani, Piul S.
    Ceradini, Daniel J.
    JOURNAL OF DIABETES RESEARCH, 2017, 2017
  • [46] Cardamonin targets KEAP1/NRF2 signaling for protection against atherosclerosis
    Fan, Pengfei
    Meng, Huali
    Hao, Wenhao
    Zheng, Yan
    Li, Hui
    Zhang, Zhiyue
    Du, Lei
    Guo, Xin
    Wang, Dongliang
    Wang, Yunyan
    Wu, Hao
    FOOD & FUNCTION, 2023, 14 (10) : 4905 - 4920
  • [47] Neutrophil elastase inhibitor suppresses oxidative stress in obese asthmatic rats by activating Keap1/Nrf2 signaling pathway
    Zheng, J-Q
    Zhang, G-R
    Li, J.
    Bi, H-W
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (01) : 361 - 369
  • [48] Short Photoperiod Reduces Oxidative Stress by Up-Regulating the Nrf2–Keap1 Signaling Pathway in Hamster Kidneys
    Ch.-L. Wang
    Zh. Wang
    J.-J. Mou
    Sh. Wang
    X.-Y. Zhao
    Y.-Zh. Feng
    H.-L. Xue
    M. Wu
    L. Chen
    J.-H. Xu
    L.-X. Xu
    Journal of Evolutionary Biochemistry and Physiology, 2022, 58 : 418 - 429
  • [49] Keap1–Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress
    Ji-chun Zhang
    Wei Yao
    Chao Dong
    Mei Han
    Yukihiko Shirayama
    Kenji Hashimoto
    European Archives of Psychiatry and Clinical Neuroscience, 2018, 268 : 865 - 870
  • [50] Keap1/Nrf2 Stress Response Pathway in Autophagic Vacuolar Myopathies
    Duleh, Steve
    Wang, Xianhong
    Margeta, Marta
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2014, 73 (06): : 614 - 614